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Introduction

Cet ouvrage est le troisieme tome d’analyse d’un recueil d’exercices de
mathématiques destiné a la préparation des oraux des concours d’entrée
aux Ecoles normales supérieures et a I'Ecole polytechnique. Il comportera
sept tomes, trois d’algebre et quatre d’analyse.

La vocation premiere des Ecoles normales est de former des cher-
cheurs ou des enseignants-chercheurs. Le concours d’entrée vise donc
a détecter les qualités scientifiques du candidat, son aptitude & la re-
cherche. A Ioral, on jugera avant tout la capacité de prendre des ini-
tiatives, d’utiliser une indication, de mener a bien une démarche. On ne
sera pas surpris que les exercices posés aient un contenu mathématique
riche, qu’ils soient tres éloignés du simple exercice technique d’appli-
cation du cours, qu’ils soient souvent difficiles. Ils visent la plupart du
temps a la démonstration d’un résultat mathématique significatif. Ils
pourraient apparaitre excessivement difficiles, si on perdait de vue le
déroulement concret de ’épreuve. L’oral des ENS est un long dialogue
(épreuve dure environ cinquante minutes, comme d’ailleurs & I’Ecole
polytechnique) entre le candidat et 'examinateur, qui tout au long de
I’épreuve fournit des indications, quand c’est nécessaire, pour relancer la
réflexion du candidat et tester ses réactions. Il est d’ailleurs impossible
de rendre pleinement compte dans un recueil d’exercices du caractere
oral de I’épreuve.

L’Ecole polytechnique, quant a elle, est plus généraliste. Les exercices
posés au concours sont de facture plus classique et, en regle générale,
I’examinateur intervient moins. C’est au candidat de montrer sa maitrise
du programme dans la résolution d’un exercice dont la difficulté est ce-
pendant tres variable. Certains sont proches des exercices d’ENS. Les
énoncés circulent d’ailleurs d’'un concours a 'autre, ou peuvent méme
étre repris d’exercices d’Olympiades.

Les énoncés qui figurent dans ce recueil ont été donnés entre 1996 et
2010. Ils sont extraits pour l’essentiel des listes publiées chaque année
par la RMS (Revue des mathématiques de l’enseignement supérieur
aux éditions Vuibert jusqu’en 2003 et désormais Revue de la filiere
Mathématiques aux éditions e.net) dont nous remercions les auteurs
pour l'aide précieuse qu’ils apportent ainsi aux éleves et aux profes-
seurs des classes préparatoires. Il s’agit de versions communiquées par
les étudiants, reflétant la compréhension que ceux-ci ont eue de ’exer-
cice et le déroulement conjoncturel de leur oral, comme le montrent les
variations d’une année a l’autre pour un méme exercice. Nous n’avons
pas hésité a les modifier, pour rectifier des erreurs, compléter un énoncé
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quand manifestement ’exercice s’est arrété avant que le résultat que
I’examinateur avait en vue ne soit atteint, ou ajouter des indications.

Nous avons choisi de laisser quelques énoncés < bruts >, ceux pour
lesquels nous estimons qu’une démarche naturelle (qui peut étre longue
et ardue) permet de conduire & la solution. Pour d’autres exercices, nous
avons pris la liberté de rajouter des questions intermédiaires, qui auraient
pu étre celles posées par I'examinateur. Quitte a perdre en concision,
nous avons tenu a rédiger les solutions les plus pédagogiques possible,
essayant d’exposer clairement les idées et démarches des raisonnements
sans pour autant escamoter les détails ou calculs qui peuvent paraitre
évidents. On évite autant que possible 'introduction d’une astuce ou
d’un objet ad hoc permettant d’atteindre rapidement la solution. S’il
n’y a pas moyen d’expliquer ’origine de cette astuce, c’est que ’exercice
est peu intéressant et que I’étudiant en tirera peu de profit.

A Tintérieur de chaque chapitre, les exercices ont été regroupés
thématiquement, et a I'intérieur de chaque theme, souvent par ordre de
difficulté croissante. Ainsi regroupés, ils apparaitront plus accessibles, car
plongés dans leur contexte mathématique, éclairés par d’autres exercices
voisins. Les introductions historiques qui ouvrent chaque chapitre, outre
leur intérét propre, visent au méme but. Enfin, nous avons agrémenté
les énoncés de quelques remarques préliminaires. Sans faire de rappels
de cours systématiques, nous avons énoncé, voire redémontré certains
résultats : lemmes classiques, intervenant dans la résolution d’'un grand
nombre d’exercices, ou résultats au contraire a la lisiere du programme,
mais utiles, pour lesquels des éclaircissements étaient nécessaires. On
trouvera aussi des remarques de synthese ou des généralisations qui,
nous ’espérons, pourront amener le candidat curieux a approfondir ses
connaissances. Les quelques indications bibliographiques ont le méme
objectif.

Le lecteur ne tirera profit de ce livre d’exercices que s’il cherche des
solutions personnelles avant d’en étudier les corrigés. Une bonne connais-
sance du cours est indispensable. En effet, les théoremes du programme
fournissent bon nombre de schémas de démonstration. Rappelons aussi
quelques démarches générales qui peuvent faciliter I’appréhension des
exercices difficiles :

> en topologie, ne pas hésiter a faire une figure pour se faire une idée
géométrique de la situation ;

> introduire des suites pour utiliser les caractérisations séquentielles
des différentes notions (limite, compacité, complétude...);

> considérer les suites f récurrentes pour les questions de points fixes
d’une fonction f;

> en ce qui concerne les intégrales, les changements de variable et les
intégrations par parties sont deux techniques a envisager en permanence ;
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> commencer par un calcul formel (interversion série-intégrale,
dérivation sous le signe intégral) pour s’assurer du bien-fondé de la
démarche avant de justifier par les théoremes ad hoc.

Au-dela des étudiants en classe préparatoire, ces ouvrages
intéresseront aussi les candidats au CAPES et a I’Agrégation, qui
y trouveront matiere a réviser les principales notions du programme,
ainsi que des exemples pour nourrir un développement pour leur oral.

Voyons maintenant plus précisément le contenu de ce tome 3 d’ana-
lyse. Il est centré sur la topologie, chapitre qui représente un bon quart
du programme de mathématiques Spéciales. Les exercices sont répartis
dans trois chapitres différents : le premier contient des exercices sur les
normes, les notions topologiques associées, la convergence des suites et
la continuité, notamment des applications linéaires. Le second est dédié
aux notions de compacité et de connexité par arcs. Enfin le troisieme est
consacré aux exercices liés a la complétude et aux espaces de Hilbert. Le
quatrieme chapitre, est a part, et regroupe des exercices sur les intégrales
sur un intervalle quelconque.

Comme dans les autres tomes, les exercices sont classés par theme. La
difficulté est toutefois plutot croissante : les chapitres commencent par
des questions techniques ou des savoir-faire indispensables (comparaison
de normes, étude d’intégrabilité...) et se terminent souvent par des exer-
cices difficiles qui ont pour objet de démontrer des théoréemes du niveau
licence ou master (prolongement de Tietze, théoréeme de Krein-Milman,
théoreme de Banach-Steinhaus, inversion de Fourier...).

Le quatrieme et dernier tome d’analyse portera sur le calcul
différentiel, les équations différentielles linéaires et non linéaires et sur
la géométrie différentielles des courbes. Il était initialement prévu un
seul tome regroupant I’ensemble mais devant ’ampleur prise par celui-ci
il a été nécessaire de le scinder en deux volumes.

Nous remercions André et Catherine Bellaiche, ainsi que Joon Kwoon
pour leur relecture enrichissante.

Enfin, si vous souhaitez nous contacter pour nous faire part de vos re-
marques, vous pouvez envoyer un courrier a ’adresse fgn.cassini@free. fr.






Chapitre 1

Espaces vectoriels normés

La topologie est un vaste champ d’étude dont le ceeur est [’étude des
déformations d’objets par des transformations continues. On reconnait
en général le probléme des sept ponts de Kénigsberg, formulé par Leon-
hard Euler en 1736, comme 'un des premiers de nature topologique (par
opposition & un probléme propre aux distances). Pour un < polyédre a
trous >, la formule d’Euler qui est valable pour un polyedre convezre
v—e+ f =2 (v nombre de sommets, e d’arétes et f de faces) tombe
en défaut comme le note Antoine-Jean Lhuilier en 1813 : sl posséde g
trous, on av—e+f = 2—2g ot g apparait comme un invariant topologique
de la surface. On doit a Listing la reprise d’idées formulées mais non
publiées par Gauss et il est le premier a utiliser le mot < topologie > dans
les années 1840 dans ces études autour des courbes et surfaces. En 1858,
de maniére indépendante, Mobius et Listing décrivent une surface fermée
dont le bord est homéomorphe a un cercle : le ruban de Mobius ne posséde
qu’une face et n’est pas orientable. En ce début de la deuxiéme moitié du
Xixe siecle, Riemann poursuit ’étude des surfaces et notamment celles
qui portent aujourd’hui son nom. Jordan et surtout Poincaré (en 1895)
mettront au clair la notion d’homotopie et de groupe fondamental d’une
surface en envisageant des déformations continues de lacets tracés sur
une surface donnée et introduiront de nouveaux invariants topologiques
comme la caractéristique d’Euler-Poincaré.

Mais, parallélement au cours de ce X1X¢ siécle, une conscience plus
fine des notions de convergence et de limites va faire émerger les concepts
fondamentauzx qui fondent la topologie. En 1817, Bolzano exprime une
vision < statique > de la convergence en notant qu’un ensemble infini et
borné de réels posséde un point d’accumulation (i.e. il existe un réel x
pour lequel tout voisinage posséde un point de l’ensemble autre que x). Ce
fameuz résultat appelé propriété de Bolzano-Weierstrass fut démontré
rigoureusement par Weierstrass en 1877 dans des publications ou l'on
trouve la notion de voisinage. Cantor en 1872, & partir de travaur sur
les séries trigonométriques et les nombres irrationnels, s’intéresse a l’en-
semble dérivé d’une partie E de R obtenu en prenant l’ensemble des
points d’accumulation de F et a loccasion définit les notions de parties
ouvertes, fermées... C’est Fréchet en 1906 dans son désir d’unifier le
langage topologique sur les ensembles de points et celui de [’analyse fonc-
tionnelle naissante (calcul des variations, étude d’opérateurs linéaires...)
qut va étendre ces concepts en passant de R et des espaces euclidiens a
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la notion plus générale d’espace métrique. Un autre grand fondateur de
l’analyse fonctionnelle moderne, Banach laisse de riches travauz ot l’on
retrouve de nombreuz résultats qui portent aujourd’hui son nom. Les es-
paces de Banach sont définis dans sa these en 1920. Enfin, la notion
moderne d’espace topologique apparue en 1914 est due essentiellement a
Hausdorff (et & un amendement de Kuratowski en 1922).

Rappelons que, E étant un espace vectoriel réel ou complexe, une
norme sur E est une application N : E — Ry vérifiant les trois axiomes
sutvants :

(i) Ve € E, N(x) =0 =z = 0 (aziome de séparation) ;

(13) Vo € E, VA € K, N(\z) = |AN(z) (aziome d’homogénéité) ;

(i) V(z,y) € E?, N(x +y) < N(z) + N(y) (inégalité triangulaire).

Il en découle aisément que la boule unité de E pour N est une partie
convezxe. L’exercice suivant montre que l'inégalité triangulaire équivaut
& la convexité de l'ensemble {x € E, N(z) < 1} lorsque les axiomes (i)
et (ii) sont satisfaits.

1.1. Sur l’inégalité triangulaire

Soit E un espace vectoriel réel et N : E — R vérifiant pour tout
(z,y) € E? et tout A € R, N(z) =0 <= 2 =0 et N(Az) = |A\|N(z).
1. Montrer que N est une norme si, et seulement si, I’ensemble
B ={z € E, N(z) < 1} est convexe.
2. On suppose que N(z + y)? < 2(N(z)? + N(y)?) pour tout
couple (z,y) € E2. Montrer que N est une norme.
(Ecole polytechnique)

> Solution.
1. Si N est une norme il est clair que B est convexe : en effet, si z et
y sont dans B et t € [0,1], on a

N((1 —t)x + ty) N((1 —t)z) + N(ty)

(1 —t)N(x) + tN(y)

1 —¢[N(z) + [tIN(y)
1—-t+1=1

VANV/AN

<
<

et (1 —t)x+ty € B.

Supposons réciproquement que B est convexe. Considérons z et y
dans E. On veut prouver que N(z + y) < N(z) + N(y). On peut suppo-
ser x et y non nuls sans quoi 'inégalité est triviale. Par homogénéité, les
vecteurs —— et —2— sont dans B. Il en est donc de méme de leur bary-

N(z) ~ N(y)

centre z affecté des masses positives N(z) et N(y). Ona z =

et le fait que N(z) < 1 conduit & N(z + y) < N(x) + N(y).

r+y
N(z) + N(y)
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2. On va utiliser la caractérisation de la question précédente et mon-
trer que B est convexe. Soient z et y deux vecteurs de B et t € [0, 1].
Posons z = (1 — t)x + ty, Vobjectif étant de prouver que z € B. La
majoration naturelle

N(2)? < 2<N((1 — )2+ N(ty)Q) <oA1=+ £2) =2 — 4¢(1 — 1)

ne permet pas de conclure directement. Mais elle montre toutefois que
N(z) € 1 lorsque t = % Autrement dit, B est stable par passage au
milieu. Il est alors facile d’en déduire que z € B lorsque t est un ra-
tionnel dyadique, c’est-a-dire de la forme ¢ = 2% avec 0 < k < 27
(par récurrence sur n). Or lensemble de ces rationnels dyadiques est
dense dans [0, 1]. Supposons sans perte de généralité que 0 < ¢ < 3
L’idée est alors d’écrire z comme barycentre de x et d’un autre point
de B avec des poids qui tendent vers 1 En effet, comme on I’a vu

plus haut, la majoration de la norme d’un barycentre est optimale lors-
qu’il s’agit du milieu. Le symétrique de = par rapport a z est le point
=2z —x=(1-2t)z+ 2ty.

T z 22—x Y

Choisissons une suite de rationnels dyadiques (¢, )nen de }0, %} qui

converge vers t et posons x,, = (1 — 2t,,)x + 2t,y. D’apres ce qui précede
z, € B pour tout n. Par ailleurs, on a

1 1-2¢
z:(l—t)x+ty:(1—t)x+t<—xn— nx)z(l—an):c—i—anxm
2ty 2t,
avec a, = t. On a alors pour tout n,

2t
N(2)? <2((1 - an)? +a2)
et il suffit de faire tendre n vers 'infini pour conclure que N(z) < 1. <

Le boule unité fermée B d’une norme caractérise cette norme. En ef-
fet, si Ny et No sont deux normes qui ont la méme boule unité fermée B
. x s ey
et si x est un wvecteur mon nul, @) € B par homogénéité et on a
1T
x

donc Ng(m) < 1 soit No(z) < Ny(z). Par symétrie il y a égalité
1
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et, comme cela reste vrai pour x = 0, on a Ny = Ny. L’ezercice sui-

vant donne une description des parties de R™ qui sont les boules unités
fermées de normes sur R™.

1.2. Description géométrique des normes

On munit R™ de son unique topologie d’espace normé. Montrer
qu’une partie B de R" est la boule unité fermée d’une norme de R™
si et seulement si B est convexe, compacte, symétrique par rapport
a origine et d’intérieur non vide.

(Ecole normale supérieure)

> Solution.

Il est clair que la boule unité fermée B d’une norme N est convexe,
symétrique par rapport a l’origine, d’intérieur non vide (il s’agit de la
boule unité ouverte) et compacte (pour la topologie définie par n’importe
quelle norme sur R™). On va s’attacher a la réciproque.

Notons B une partie de R™ vérifiant toutes les propriétés précédentes.
On cherche & construire une norme N telle que B = {z € R", N(z) < 1}.
Pour cela I'idée est d’utiliser I’homogénéité. Pour x vecteur non nul de

R"™ posons I, = {)\ > 0, ; € B}. Montrons que cet ensemble n’est pas

vide. En effet, l'origine est forcément un point intérieur a B car si A est
intérieur & B, on peut trouver r > 0 tel que B(A,r) C B (ou la boule
considérée est, par exemple, relative a la norme euclidienne de R™). Par
symétrie de B on a aussi B(—A,r) C B et par convexité il en découle
que B(0,7) C B. Ainsi, tous les réels suffisamment grands sont dans
I,. Mieux : comme B est convexe et contient l'origine, si A € I, on a
forcément [A, 4+-o00[ C I,. Donc I, est un intervalle non majoré de R .
Comme B est compacte, elle est bornée. Soit M > 0 tel que |ja]] <M

pour touta € B.SiA€l,ona > ] > 0. Posons alors N(z) = infI,.

On vient de prouver qu’il s’agit d’un réel strictement positif. Comme B
est fermée, U'intervalle I, est aussi fermé et il est donc égal a [N(z), +ool.
I1 ne reste plus qu’a vérifier que N (prolongée en 0 par N(0) = 0) est une
norme et que B en est la boule unité fermée.

e [’application N est positive et I’axiome de séparation est vérifié.

e Si x est non nul et si p est un réel strictement positif il est clair
que I, = [uN(x),+oo|, donc on a N(uz) = uN(z). Par symétrie de B
onal_, =1, donc N(—z) = N(x) et finalement N est homogene.

e Pour z € R™ on a N(z) < 1 si, et seulement si, 1 € I, donc si,
et seulement si, x+ € B. Comme B est convexe, on en déduit que N
vérifie 'inégalité triangulaire (voir la solution de la premiére question de
Pexercice précédent).
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D’ou le résultat : N est une norme de boule unité B. <

Méme si le petit exercice qui suit n'utilise que l’inégalité triangulaire,
il n’est pas complétement évident.

1.3. Une inégalité

On munit R? d’une norme quelconque || ||. Soient z,y, 2 trois
points tels que 0 soit intérieur (au sens large) au triangle zyz.

1. Montrer que [lz|| + [[y]| < [lz — 2]l + [ly — z]|.

2. Soit t € R2. Montrer que

el + Iyl + 121 < lle = ¢l + lly = ¢l + 1z — 2l + [12]]-

(Ecole normale supérieure)

> Solution.

1. Pour u € R?, posons f(u) = ||z — ul| + ||y — u||. On doit prouver
que f(0) < f(z). Les fonctions u — ||z —u|| et u — ||Jy—u|| sont convexes.
En effet, pour u et v dans R? et A € [0,1], on a

o=+ (1=A)0)| = [A@—u)+(1-) (@—0)|| < Alle—ul+1-N)]je—v].

On en déduit que f est également convexe. Il en découle que I’ensemble
A = {u € R? f(u) < f(2)} est une partie convexe de R?. D’apres
I'inégalité triangulaire, on voit que = et y sont dans A, tout comme z.
Comme par hypothese 0 est dans l'enveloppe convexe du triangle zyz,
on a0 € A, ce qui prouve I'inégalité.

2. On peut toujours choisir deux sommets parmi x,y, z, tels que 0
soit dans l'intérieur (au sens large) du triangle formé par ces deux som-
mets et ¢ :

y'/ -,
®¢

Supposons que, comme sur la figure, ces sommets soient = et y. On
a alors d’apres la premiere question ||z|| + |ly|| < ||l —¢|| + |ly — t||. Par
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ailleurs, ||z|| < ||z — t|| + ||t|| par inégalité triangulaire. Le résultat en
découle en faisant la somme. <

L’inégalité prouve que l'origine est le point du plan qui minimise la
somme des distances aux quatre points 0,x,y, z.

1.4. Recherche d’un minimum

Soit, pour P dans C[X], N(P) = sup{|P(2)|, |2| = 1}.

1. Montrer que N est une norme sur C[X].

2. Soient n dans N* A, Dlensemble des polynémes unitaires
de degré n de C[X] prenant la valeur 1 en 0. Quelle est la borne
inférieure de N sur A,, 7

(Ecole normale supérieure)

> Solution.

1. On a N(P) > 0 pour tout polynéme P et si N(P) =0, P(z) =0
pour tout z de module 1, donc P a une infinité de racines et P = 0. Pour
PeCetAeC,ona

N(AP) = sup{|A[ [P(2)], 2] = 1} = [A|sup{|P(2)], |2] = 1} = [AIN(P).
Enfin si P et Q sont deux polynoémes, on a pour |z| =1,
(P +Q)(2)] < [P(2)] + Q=) < N(P) + N(Q),

et par passage & la borne supérieure, N(P + Q) < N(P) + N(Q).

Donc N est bien une norme sur C[X].

2. Examinons le cas des petites valeurs de n.

Il n’y a qu'un seul polynéme dans Aj, a savoir 1 + X, et on a, pour
tout 0 € R, |1+ €| = |e~"% + ei2| = |2 cos §| done N(1 4+ X) = 2.

Tout polynéme de Ay s’écrit 1 4+ aX + X2, avec a € C et pour tout
0 € R,

|1+ae’®+e2| = |e~ ¥ a+e?| = ‘2 cosf+a| = \/(2 cosf + Rea)? + (Ima)?.

Le maximum est obtenu pour cosf = £1 selon le signe de Rea et et on
trouve

N(1+aX +X?) = /(2 + |Real)? + (Ima)? = /4 + 4| Rea| + [a? > 2.

La borne inférieure de N(P) sur A, vaut 2 et est atteinte pour P = 14+X2.
Montrons que pour n quelconque la borne inférieure de N sur A,, est
toujours atteinte en 1 + X". La norme de 1 4+ X" est 2. En effet, pour
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tout 8 € R,

|1 +€in9‘ — ‘e*i%e +e n8| — ‘2COS*‘

Il reste & montrer que, pour tout P € A,,, N(P) > 2. Une méthode directe
n

est cette fois-ci inapplicable. Soit P = 3~ a;X¥, ot ag = a,, = 1.
k=0

Calculons S,, = Z P(e*"). On a

7=0
n—1 n 2ik n n—1 2ik
: s N ™
B SPILTE D SP S
j=0 k=0 k=0  j=0
2kr 2k 1— €i2k7r
Sik#0et k#n,e™n #1et Zel n = ———— =0. Il reste donc
=0 1—e""n

S, = nag + na, = 2n. On en déduit

n—1 ) n—1 R
2n= |3 P )| < 0 [Pe nN(P)
j=0 7=0

et donc N(P) > 2. On peut préciser les cas d’égalité. Si (P) = 2 toutes
=2

les inégalités précédentes sont des égalités. On a donc )

pour tout j et tous les P(e! TW) ont méme argument (cas d’ egalité
dans l'inégalité triangulaire). Tous les P(ei%ﬂ) sont donc égaux a 2.
Con51derons le polynome P — (1+X") qui appartient & C,,_1[X]. Il s’an-
nule en et %" pour 0 < 7 < n— 1.1l a donc au moins n racines. C’est le
polynoéme nul. Donc P = 1 + X7

Conclusion. Pour P € A, le minimum de N(P) est 2. Il n’est atteint
que pour P =1 4 X".

L’exercice suivant regroupe des questions posées a des oraux différents
portant sur le théme des normes absolues.

1.5. Normes absolues

Soit n € N*, || || la norme euclidienne sur R"™ et N une autre
norme. Si x = (21,...,2,) € R™ on pose |z| = (|z1],...,|zn|) et on
écrit © > 0 lorsque x = |z|. On dit que la norme N est absolue si
N(z) = N(Jz|) pour tout z.

1. Montrer que N est absolue si, et seulement si, N est monotone,
c’est-a-dire vérifie |z| — |y| > 0 = N(x) > N(y) pour tout (z,y).
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2. Donner un exemple de norme non absolue sur R”.

3. Soit A € M, (R). A quelle condition I'application = — ||Az|
est-elle une norme absolue sur R™ ?

4. Soit M la norme triple de M, (R) associée a N. Montrer que
N est absolue si et seulement si M(A) < M(JA]|) pour toute matrice
A = (a;5) ou |A]| désigne la matrice de coefficients |a;;|.

(Ecole normale supérieure)

> Solution.

1. Pour deux vecteurs = (1,...,2Zn) et ¥y = (Y1,-..,Yn) de R™ on
écrira x < y lorsque y —x > 0 c’est-a-dire si z; < y; pour tout i. Il s’agit
clairement d’une relation d’ordre sur R”.

e Supposons d’abord N monotone et considérons = € R™. Si y = |z|
on a clairement |z| = |y| donc N(z) < N(y) et N(y) < N(z). On a donc
bien N(z) = N(y) = N(|z|) et N est absolue.

e Supposons réciproquement que N est absolue et considérons x et
y dans R™ avec |z| < |y|. Quitte & remplacer x par |z| et y par |y| on
peut supposer que 0 < z < y. Pour prouver que N(z) < N(y), il suffit de
prouver que N est croissante par rapport a chaque coordonnée lorsque
celle-ci varie dans R, et par symétrie, il suffit de le rédiger pour la
premiere. Fixons ag, ..., a, dans R, et notons f la fonction qui a t € R
associe f(t) = N(t,as,...,a,). Comme f(|t|) = f(t) pour tout ¢, f est
une fonction paire. Par ailleurs, elle est convexe sur R. Ces conditions
imposent que f est croissante sur Ry. En effet, si 0 < ¢ < ¢/, la pente
du segment joignant les points (—t, f(—t)) et (¢, f(t)) est nulle, donc par
le théoreme des pentes croissantes, celle du segment qui joint les points
(t, f(t)) et (¥, f(t')) est positive.

Voici une seconde solution plus géométrique : comme |z| < |y|, le
vecteur x est dans l'enveloppe convexe des 2™ points (e1y1,.-.,EnYn),
ou g; = —1 ou 1. En effet, chaque x; € [—y;, y;] peut s’écrire comme ba-
rycentre de (—y;, t;) et (y;, 1 —¢t;), ou t; € [0, 1]. Cette enveloppe convexe
contient donc tout point de la forme (z1,e2y2,...,E,Yn), car il est bary-
centre de ((—y1,22Y2,---,&nUn),t1) €t ((y1,€2Y2, - ., Enln), 1 — t1), puis
tout point de la forme (x1,x2,€3y3,-..,EnYn), car il est barycentre de
((1‘1, —Y2,E3Y3, ... 7€nyn)7 tQ) et ((1‘1, Y2,E3Y3, ... 7€ny"), 1 7t2), ... et fi-
nalement contient z. Ces 2" points ont tous la méme norme car N est
absolue. Le résultat découle alors directement de I'inégalité triangulaire.

2. La norme euclidienne ainsi que les normes usuelles || |1 et || [|oo

définies pour x = (x1,...,2,) par ||z|; = Z |2k, et ||2]| oo = max |2k
k=1
sont clairement des normes absolues. Donnons un contre—exemple sur

R? que le lecteur généralisera facilement. Pour X = (z,y) € R?, posons
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10
11
N est une norme. Elle n’est pas absolue car N(—1,1) = 1 et N(1,1) = 2.
Une norme sur R™ est parfaitement caractérisée par sa boule unité
fermée (voir Uexercice 1.2). La propriété d’étre une norme absolue doit
donc se wvoir sur cette boule. D’apres la question 1, si N est absolue
et si © est dans la boule unité fermée, alors tout Uhypercube formé des
vecteurs y tels que |y| < |x| est inclus dans cette boule. Réciproquement,
si la boule posséde cette propriété, alors N est absolue. On voit que sur
notre exemple (figure de gauche), la propriété est en défaut. A droite est
représentée la boule de la norme || |1 sur R? qui est absolue.

N(X) = max(|z|, |z+y|) = [[AX]|s o A = . Tl est aisé de voir que

3. Pour que z — ||Az|| soit une norme il est nécessaire et suffi-
sant que A soit inversible. Supposons cette condition réalisée. Notons
(C1,...,Cp) la famille des colonnes de A. La norme x — [|Az|| est
absolue si, et seulement si, on a, pour tout (x1,...,z,) € R",

[21C1 + -+ + 2,Cp||* = |||z1]C1 + -+ + 2] Co ||

Pour 7 # j donnés, prenons x; =1, ; = —1 et &, = 0 pour k£ # 7,5. On
doit donc avoir |C; — C;||? = ||C; + C;||* ce qui en développant donne
(C;,C;) = 0. Autrement dit, la famille des colonnes de A doit étre une
base orthogonale de R™. Réciproquement, si cette condition est réalisée,
on a, pour tout (z1,...,2,) € R™,

n
JA]? = fl&1C1 + - + &, Call® = 3 2]l
=1

et il est clair que la norme est absolue.
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4. Supposons d’abord que N soit absolue et considérons A € M, (R).
Soit z € R™. Par l'inégalité triangulaire pour la valeur absolue, on a
clairement |Az| < |A] |z|. On en déduit

N(Az) = N([Az]) < N(JA[[z]) < M(JAN(|2[) = M(|A[)N(z).

Il en découle, par définition de la norme triple, que M(A) < M(|A]).

Supposons réciproquement que M(A) < M(]A|) pour toute matrice
A et considérons x = (z1,...,2,) € R™ Soit D la matrice diagonale
telle que d;; = 1 si @; est positif et —1 sinon. Comme |D| est la matrice
identité on a M(D) < 1. Or, |z| = Dz donc

N(Jz|) = N(Dz) < M(D)N(z) < N(z).

Mais évidemment D est inversible et D! = D. On a donc x = D|z]|
ce qui conduit a l'inégalité opposée. On conclut que N est une norme
absolue. <

Les normes absolues qui de plus sont symétriques (c’est-a-dire inva-
riantes par permutation des coordonnées) jouent un réle important dans
la description des normes sur M,,(C) invariantes sous l’action du groupe
unitaire (c’est-a-dire vérifiant ||[UAV|| = ||A|| pour U et V unitaires).

Par restriction du corps des scalaires, un espace normé complexe est
naturellement muni d’une structure d’espace normé réel. L’exercice sui-
vant étudie en quelque sorte la réciproque.

1.6. Espace normé réel vs espace normé complexe

Soit E un espace vectoriel complexe et N une norme sur E
considéré comme un espace vectoriel réel. On suppose que I’ho-
mothétie de rapport i est continue dans (E,N). Etablir I'existence
d’une norme M sur E, considéré comme espace vectoriel complexe,
qui est équivalente a N.

(Ecole polytechnique)

> Solution.
Si M convient, la valeur de M(Az) pour A € C et z € E ne doit
dépendre que du module de A\. On a donc assez vite 1'idée de poser

M(z) = sup N(A\z) = sup N(e"x).
IA|=1 9eR

Justifions d’abord cette définition. Si A = a + ib est de module 1 et si
r€E,ona
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N(Az) = N(az+ibz) < N(az)+N(ibz) < |a|N(z)+KN(bzr) < (14+K)N(x),

ou K est la norme triple de 'homothétie de rapport i. Cette majoration
justifie I'existence de la borne supérieure.

Montrons maintenant que M est une norme du C-espace vectoriel E.
Il est clair que M > 0 et que si M(z) = 0 alors N(z) = 0 et donc = = 0.
Pourz € Eet p€ Con a

M(pz) = sup N(Auz) = sup N(A|u[z) = |p| sup N(Az) = |p[M(z).
[Al=1 [Al=1 [A]=1

Enfin P'inégalité triangulaire est évidente. Comme N < M < (1 + K)N
les normes N et M sont bien équivalentes. <

L’énoncé suivant est trés classique auzx orauz des concours et souvent
posé directement avec r = 1.

1.7. Une fonction lipschitzienne

Soit (E,|| ||) un espace normé réel et » > 0. Soit p : E — E
définie par p(x) = x si ||z]| < r et p(z) = ﬁ st ||lz] > r.

1. Montrer que p est lipschitzienne.

2. Quediredesup{W,( b) €E? a ;éb}

(Ecole normale supérieure)

> Solution. 1
1. Posons ¢q(z) = ;p(rm) qui vaut z si ||z]] < 1 et H siz > 1. Cela

nous ramene donc & ne traiter que le cas ot r = 1 puisqu’il est clair que
q est K-lipschitzienne si, et seulement si, p est K-lipschitzienne. Prenons
x et y dans E et distinguons 3 cas :
e Si x et y sont dans la boule unité, on a ||q(x) — q(v)| = ||z — y||.
e Si z et y sont tous les deux hors de la boule unité, on a

) — gt~ A=l [l =) + Gl = o]
9z)—qy —
EI E
e —yl  [Ivl =l
< eyl | S
[l ]

e Si x est dans la boule unité et pas y, on a
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lg(z) — a(y) Hx N ﬁH _ H lyll(z —y) +y(llyll — 1) H

[yl
< =yl +llyl =1 < 2)lz -y

car [lyl =1 < [lyll = ll=|| < lly — =[]

Ainsi la fonction ¢ (donc p également) est 2-lipschitzienne.

2. Notons K la borne supérieure de 1’énoncé a savoir la plus petite
constante de Lipschitz possible pour ¢ (c’est la méme que pour p). On
a donc prouvé que 1 < K < 2 (la minoration est évidente), mais on ne
peut pas déterminer K de maniere générale car cela dépend de la norme.
Donnons deux exemples montrant que cet encadrement ne peut pas étre
ameélioré.

e Prenons tout d’abord pour E un espace euclidien (ou méme
préhilbertien). On va reprendre les majorations ci-dessus. Pour x et y en
dehors de la boule unité, on a

_ 2 _ 2 2
la() — a)? =2 — 288 _ o Nz =ul® ~ el ~ ]
IR e

done [lg(z) — ¢ < ||z — y|? car M + Il > 2 si st dans 1a

boule unité et pas y, on a alors

2 Yy 2 2<$,y>
lo@) = awl* = o= =1 el - 2
BTN et bl e B
ol
M + (Iyll _1)<| ” >< IIx—y||2
ol ol ) S

car |ly|| = 1 et [|z|| < 1. On en déduit donc que dans ce cas ¢ est 1-
lipschitzienne autrement dit que K = 1.
e Prenons maintenant E = R? muni de la norme || ||oo. Soit z = (1,1)

ety = (14+¢,1—¢) avec £ € 10,1]. On a g(z) = (1, 1), g(y) = <1, Lo
2e

T2 . On en déduit que

lg(z) —a@Wlle 2

ly—alle  1+e

et donc [ly — zl[ec =€ et [lg(2) — q(y)[lcc =

et ce rapport tend vers 2 lorsque ¢ tend vers 0. Dans ce cas la meilleure
constante de Lipschitz possible pour ¢ est donc K = 2. «

Un théoreme de Figueiredo-Karlovitz montre que st K = 1, avec
dimE > 3, alors la norme est nécessairement hilbertienne.
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L’exercice suivant est a rapprocher de lexercice 1.4 du tome 3

d’algébre dans lequel on caractérise les normes euclidiennes a ['aide de
lidentité du parallélogramme.

1.8. Caractérisation des normes euclidiennes

Soit E un espace vectoriel réel de dimension finie non nulle et N
une norme sur E. On pose

N?(z +y) + N*(z — y)
u(E,N) = sup
(z)£0,0 2(N%(z) 4+ N2(y))

1. Montrer que 1 < u(E,N) < 2.
2. Montrer que pu(E,N) = 1 si, et seulement si, N est une norme
euclidienne.
3. Donner un exemple d’une norme N pour laquelle p(E,N) = 2.
(Ecole polytechnique)

> Solution.
1. En prenant y = 0 et 2 non nul, on obtient u(E,N) > 1. Pour z et
y quelconques dans E on a, par inégalité triangulaire,

N*(z +y) < N*(x) + N*(y) + 2N(2)N(y) < 2(N*(2) + N*(y)).
On a de méme N?(z — y) < 2(N?(x) + N2(y)) et donc, si (z,y) # (0,0),

N2(z +y) + N2(z — y)
2(N?(z) + N2(y))

< 2.

Par passage & la borne supérieure on obtient u(E,N) < 2.
2. Silanorme N découle d’un produit scalaire, alors pour tout couple
(z,y), on a N*(z +y) = N*(z) + N*(y) + 2(z, y) donc

N*(z +y) + N*(z — y) = 2(N*(z) + N*(y)).

et il en découle que wu(E,N) = 1. Réciproquement, supposons que
w(E,N) =1 et considérons (z,y) € E%. On a

N*(z +y) + N?(z — y) < 2(N*(z) + N?(y)).

(r—y).Onautv ==z

N =

. NDSRN 1
Appliquons cette inégalité & u = 5 (x+y)etv =
et u — v =y, donc par homogénéité il vient

N2(2) +N2(y) < 5(N*( ) + NGz — ).
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On a donc N?(x+y) +N?(z —y) = 2(N?(z) + N?(y)) : la norme N vérifie
I'identité du parallélogramme et cela implique qu’il s’agit d’une norme
euclidienne (voir la preuve de ce fait dans la correction de I'exercice 1.4
du tome 3 d’algebre).

3. Une norme N pour laquelle pu(E,N) = 2 est donc fortement non
euclidienne. C’est le cas par exemple de la norme || || oo sur R™. En prenant
x=(1,1,...;,1) et y = (1,-1,1,...,1) on a ||z]lcc = ||yllo = 1 et
|z + Ylloo = |2 — ylloo = 2 et il en découle que p(R™, || ||oo) = 2. <

Soit E un espace préhilbertien. Si un sous-espace F de E admet
un supplémentaire orthogonal G, alors G est unique. En effet G est
nécessairement égal @ F+ = {x € E,Vy € F, (z,y) = 0} : linclu-
sion G C Ft est vraie par définition, et inversement si x € FL+, on
peut lécrire x = xp + xg, avec xp € F et g € G; on a alors
0 = (zp,z) = ||zp||? donc x = zg € G. L’exercice suivant généralise ce
résultat a un espace normé quelconque, la relation d’orthogonalité étant
définie a 'aide de la norme.

1.9. Orthogonalité généralisée

Soit (E,N) un R-espace vectoriel normé de dimension finie. On
dit que x L y si N(x +y) = N(z — y). Montrer que, si & un sous-
espace F de E on peut associer un sous-espace vectoriel G tel que
E=F+GetF L G, alors G est unique.

(Ecole normale supérieure)

> Solution.

Bien entendu si la norme N découle d’un produit scalaire (, ) alors
N(z + y) = N(z — y) équivaut a (z,y) = 0 c’est-a-dire & I'orthogonalité
de x et y. Notons que de maniere générale la relation L est symétrique
etquer L <z =0.

Soit G un sous-espace vectoriel de E tel que E =F+G et L y pour
tout (z,y) € F x G. Montrons qu’alors G est 'orthogonal de F défini par

Ft={ycE VzecF, =Ly},

ce qui prouvera son unicité. Par définition on a G C Ft. Démontrons
I'inclusion inverse. Soit z € F+ et (f,g9) € F x G tel que z = f + g.
On a, pour tout z € F, x L (f + g), c’est-a-dire

N(z + f+g)=N(z - f —g).

D’autre part, (z+ f, g) appartient & F x G, donc (z+ f) L g, ce qui donne
N(z+ f+g) =N(z+ f — g). En combinant les deux résultats on obtient



1.10. PROLONGEMENT D’UNE NORME DEFINIE SUR Z2 19

donc N(z+ f—g) = N(z— f—g). En particulier, si on prend x = (A+1) f
avec A € R, on a N((A+2)f —g) = N(\f — g). Considérons application
©: A€ R+ N(Af—g) € R. D’apres ce qui précede, ¢ est 2-périodique.
Elle est continue, car composée de l'application A\ — Af — g et de la
norme qui sont continues. On en déduit que ¢ est bornée sur R. Mais,

powr A # 0, p(3) = AN(f - 2). On a lim N(f_ﬁ) — N(f). Si
A A—00 A
N(f) # 0, alors /\lim ©(A\) = 400 et p n’est pas bornée. On a donc f =0
—00
et z =g € G. D’ou le résultat. <

Pour résoudre ’exercice suivant, le lecteur pourra utiliser le résultat
de ’exercice 3.8.

1.10. Prolongement d’une norme définie sur 72

Soit N : Z2 — N une application vérifiant les trois axiomes d’une
norme :
(i) Vu € Z?, N(u) = 0 <= u = 0;
(i) Yu € Z2%, YA € Z, N(\u) = |A|N(u);
(iii) Y(u,v) € (Z*)?,N(u + v) < N(u) + N(v);
Montrer que N se prolonge de facon unique en une norme sur R2.
(Ecole normale supérieure)

> Solution.

e Commengons par prouver l'unicité d’un tel prolongement. Sup-
posons que N; et Ny sont deux normes sur R? qui prolongent N. Si
(z,) € Q2 on peut trouver un entier k > 1 tel que (kx, ky) € Z? et on
a donc par homogénéité

= Na(z,y).

Donc N; et Ny coincident sur Q2. Comme les deux normes N; et Ny sont
continues sur R? (pour son unique topologie d’espace vectoriel normé)
et comme Q? est dense dans R?, on a N; = Ns.

e Passons a l'existence. On commence par prolonger N & Q2 comme

cela se voit ci-dessus : si (r,y) € Q2 on consideére les représentants

irréductibles x = % et y = g et on pose N(gj,y) = M ol

k = ppem(b,d) € N*. Il est alors facile de vérifier que 'axiome d’ho-
mogénéité N(A\u) = |A|N(u) reste vérifié pour tout u € Q? et tout A € Q.
On note que (i) reste aussi vérifié : pour (z,y) € Q?, N(z,y) > 0etilya
égalité si, et seulement si, (z,y) = 0. Montrons I'inégalité triangulaire :
si v et v sont dans Q2, on peut trouver k > 1 tel que ku et kv soient
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dans Z? et on a alors

N(u+v) = N(kuk+ kv) < N(ku) Z N(kv) — N(u) + N(v).

On en déduit en particulier que |N(u) — N(v)| < N(u — v) pour tout
couple (u,v) de points de Q2. En notant (ej,es) la base canonique de
R2 on a N(z,y) = N(ze; + yea) < (N(e1) + N(ez) max(|z|,|y|) pour
tout (x,y) € Q% Combiné avec ce qui précéde, on en déduit que N est
lipschitzienne de rapport K = N(e1) + N(ez) de (Q?, || ||oo) dans R et en
particulier uniformément continue.

On utilise alors le théoreme de prolongement des fonctions uni-
formément continues & valeur dans un espace complet (voir 'exercice
3.8) : il existe un unique prolongement uniformément continu de N & R?,
prolongement que I'on note encore N dans la suite. Il est immédiat de
voir que les propriétés (i) et (iii) restent vérifiées sur R? par passage
a la limite, et que N reste K-lipschitzienne de (R?, || || ) dans R. Pour
prouver que N est une norme il reste a vérifier ’axiome de séparation.
Notons que N(u) > 0 pour tout u € R? par passage a la limite. Il nous
reste a prouver que l'inégalité est stricte pour u non nul. Raisonnons
par l'absurde en supposant que N s’annule en un vecteur u. Par ho-
mogénéité on peut supposer que u = (1, a), avec nécessairement a ¢ Q.
On va approcher a par un rationnel pour obtenir une contradiction. Soit

b= g € Q*. On a N(1,b) = %N((Lp) > é car N(g,p) est un entier

naturel non nul. Par ailleurs,

p

N(1,b) = N(1,b) — N(1,a) < N(0,b —a) < K|b — a] :Ka—f’-
q

Pour obtenir une contradiction, il suffit de prouver qu’on peut trouver un
. p 1 R . R . .
rationnel b = . tel que [ga—p| < ' C’est une question d’approximation

diophantienne classique. Notons que K = N(ej) + N(ez) est un entier

> 2. Parmi les K + 1 réels 0,a,2a,...,Ka pris modulo 1, il y en a au
moins deux qui tombent dans le méme intervalle de la forme [%, ! ;; ! [

ou 0 € i < K (d’apres le principe des tiroirs). Par différence, on peut
trouver ¢ € [1, K] tel que la distance de qa & Z est strictement inférieure

N

a C’est le résultat voulu. <

L’exercice suivant montre qu’il n’existe pas de norme sur M, (R) qui
soit constante sur toutes les classes de similitudes, puis s’intéresse aux
semi-normes qui ont cette propriété. Rappelons qu’une semi-norme N
sur un espace E vérifie tous les axiomes d’une norme sauf limplication
N(z) =0 = 2 = 0. Il est facile de voir que Eg = {x € E, N(z) = 0}
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est alors un sous-espace de E et que N induit une norme sur l’espace

quotient E/Eq. Les semi-normes sont utilisées pour définir des topologies
plus générales que celles découlant des normes.

1.11. Semi-normes invariantes par similitude

1. Soit n > 2. Montrer qu'il n’existe pas sur M, (R) de norme
|l]] invariante par similitude, i.e. telle que

2. Montrer que A — |TrA| est une semi-norme sur M, (R)
qui est invariante par similitude.
3. Déterminer toutes les semi-normes sur M, (R) invariantes par
similitude.
(Ecole normale supérieure)

> Solution.
1. Notons que dans le cas n = 1 toutes les normes sont invariantes
par similitude. Supposons l'existence d’une telle norme || || sur M, (R)

avec n > 2. Par hypothese, on a ||AP|| = ||PA|| pour tout couple (A, P)
de M, (R) x GL,(R). Par densité de GL,(R) et continuité de la norme
on a ||AB|| = ||BA|| pour tout couple (A,B) € M, (R)%. Or sin > 2,
il est aisé d’exhiber A, B telles que AB = 0 et BA # 0, par exemple en
prenant deux matrices de la base canonique. D’ou I'impossibilité.

2. 1l est clair que, pour A et B dans M,,(R), et A € R, on a

| Te(A)[ = 0, [ TrQAA)| = N Te(A)] et | Tr(A+B)| < | Tr(A)[+] Tr(B)[.

On a donc bien une semi-norme. De plus, si P € GL,(R), on a par
propriété de la trace Tr(P~1AP) = Tr(APP~!) = Tr A, donc cette semi-
norme est invariante par similitude.

3. Soit N une semi-norme invariante par similitude. Notons que N
est continue : en effet, si || || est une norme quelconque sur M, (R),
il en est de méme de N + |||, donc N s’écrit comme la différence de
deux normes et est continue. En particulier, on en déduit comme dans
la question 1, que N(AB) = N(BA) pour tout couple (A, B) € M,,(R)2.

Considérons F = {A € M, (R), N(A) = 0}. Il résulte de I'inégalité
triangulaire que F est un sous-espace vectoriel de M,,(R). Observons
que si A € M,(R) et BeF, onaNA+B) <N(A)+N(B) =N(A)
et N(A) = N(A +B - B) < N(A + B) + N(—B) = N(A + B) de sorte
que N(A + B) = N(A). On va montrer que F contient 'hyperplan des
matrices de trace nulle. Soit i # j deux entiers de [1,n]. On a
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N(Eij) = N(E;Ej;) = N(Ej;Ei5) = N(0) =0

donc E;; € F. On en déduit que F contient toutes les matrices de dia-
gonale nulle. Or, il est classique que toute matrice de trace nulle est
semblable & une matrice de diagonale nulle (voir I'exercice 7.12 du tome
algébre 1). Donc F contient 'hyperplan des matrices de trace nulle.

Si A e M,(R), alors —A + TTTALL € F donc

N(A) = <A A+TI"A )Jw")

n

| Tr(A)]

et N est positivement colinéaire a la semi-norme de la question
précédente.

Conclusion. Les semi-normes invariantes par similitude sont les ap-
plications A — A| Tr A| avec A € R;. <

Les exercices suivants concernent les comparaisons de deux
normes sur un meéme espace. Il est bien connu que sur l’espace
C°([0,1],R) des fonctions continues, les normes classiques définies par

1/2
Il = st 17 151 = 171 et 171 = ([ £2) * ne sont pas

équivalentes, les seules inégalités étant || ||1 < || ll2 < || loo- L’exercice
suivant regarde ce que l’on peut dire d’un sous-espace F de E sur lequel
oo €t || ll2 deviennent équivalentes.

1.12. Norme infinie vs norme de la convergence en moyenne
quadratique

Soit E = C°([0,1],R), C > 0 et F un sous-espace vectoriel de E
tel que || f]loo < CJf]|2 pour toute fonction f € F.
1. Montrer que F # E.
2. Montrer que F est de dimension finie inférieure & C2.
3. Donner un exemple d’un sous-espace F de dimension n > 1
vérifiant ’hypotheése avec C = /n.
(Ecole normale supérieure)

> Solution.
1. C’est une question de cours. Considérons f,, : x — x™ pour tout

1
n €N Ona |folloc=1c¢t|[full2 = NoTEST
donc exister de constante C > 0 telle que || fr]loo < C||fn|l2 pour tout n.

pour tout n. Il ne peut
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2. SiF est un sous-espace de dimension finie, les normes || || €t || ||2
deviennent équivalentes sur F. On va démontrer que c’est le seul cas ou
cela se produit.

Munissons F du produit scalaire (f,g) — (f,g) = /01 fg dont découle

la norme || ||2 et considérons une famille orthonormée (fi,..., fp) de F.
Pour (Ar,...,A,) € R?, on aalors A fi+ -4+ A fpll3 = AT+ + A2,
Par hypothese, on a done, pour tout z € [0, 1],

ALfi(@) + -+ A fp(2)? K CPAT + -+ A2).

L’idée astucieuse est alors d’écrire cette inégalité pour = fixé en prenant
des A qui dépendent du point z, a savoir A\ = fi(z). On a donc, pour
tout z € [0, 1],

(i@ +-+ fr (@) < C(a@) + - + fo(x)?),

donc ff(z) + -+ + f3(x) < C?. En intégrant cela entre 0 et 1, on ob-
tient ||f1ll3 4+ -+ + [ fpl3 < C?, soit p < C%. On en déduit que F est
nécessairement de dimension finie inférieure ou égale & C? (sans quoi
on pourrait trouver une famille orthonormée de cardinal strictement
supérieur a C?).

3. On va prendre pour F un sous-espace engendré par une famille
orthonormée (f1, ..., fn). D’apres la question précédente, il est nécessaire
que cette famille vérifie fi(z)? + -+ + fu(z)? < n pour tout z € [0,1]
(en fait, il y a égalité, puisque les intégrales sont égales). Mais cela est

suffisant. En effet, si f = A\ fi +--+ \fn €F,ona ||f]3 = X Ai et,
k=1

par l'inégalité de Cauchy-Schwarz,

@) < (Z Ai) (Z fk<:c>2) <nlfI
k=1 k=1

pour tout x, donc ||f|lec < /n|f|l2- Pour trouver une telle famille
orthonormée, il faut penser au cours sur les séries de Fourier et plus
précisément aux polynoémes trigonométriques. On sait que les fonctions
x —> coskx et x — sinkz forment une famille orthogonale pour le
produit scalaire intégral sur [0,2x]. On se rameéne au segment [0, 1],
en considérant les fonctions ¢ : © —— V2cos(2knz) et s @z —>
V/2sin(2kmz) pour tout k > 1, qui forment une famille orthonormée. On
note de plus ¢ la fonction constante égale a 1. Si n = 2p est pair, il suf-
fit alors de prendre la famille (c1, ..., ¢p, $1,. .., Sp) qui convient puisque
cf+~~~+cf,+s%+~~+sf,:Qp:n. Sin =2p+ 1 est impair, il suffit
d’ajouter la fonction ¢y a la suite orthonormée précédente. <

Si E est un espace préhilbertien réel, il découle du cas d’égalité dans
Uinégalité de Cauchy-Schwarz que ||z + y|| = ||z]| + ||y|| st, et seulement



24 CHAPITRE 1. ESPACES VECTORIELS NORMES

si, les vecteurs x et y sont positivement colinéaires. Cela n’est bien en-
tendu pas le cas pour une norme quelconque : par exemple dans R? si
r = (1,0) et y = (0,1) on a ||z +yl1 = [[=|l1 + lyllr. Dans lezercice
suivant, on prouve toutefois que si E est séparable (c’est-a-dire contient
une partie dénombrable dense), alors on peut toujours trouver une norme
équivalente a la norme de départ qui posséde cette qualité.

1.13. Cas d’égalité dans l’inégalité triangulaire

Soit (E, || ||) un espace normé réel.

1. Pour z non nul dans E, on définit I'application p, : E — R
par py(a) = inf{||a + Az||, A € R}. Montrer que pour a,b dans E et
A€Rona

px(a + b) < px(a) +pr(b) et pfc()‘a) = |)\|p1(a)

Déterminer {a € E, p,(a) = 0}.

2. On suppose qu’il existe une suite (z,)p>1 dense dans E.
Construire une norme N, équivalente & || || et telle que pour tout
(a,b) € E?, I'égalité N(a+b) = N(a) + N(b) implique que a et b sont
positivement colinéaires.

(Ecole normale supérieure)

> Solution.

1. Géométriquement, p,(a) s’interpréte comme la distance de 'ori-
gine & la droite affine passant par a et dirigée par z. Soit (a,b) € EZ.
Pour (A, i) € R? on a, par inégalité triangulaire,

pe(a+b) <lla+b+ A+ pz| <llatre] +[]b+ pl.

En passant a la borne inférieure sur A\ puis sur p, on obtient donc
I'inégalité p,(a + b) < py(a) + pg(b). Soit A € R. Pour tout réel u,
on a

pe(Aa) < [[Aa+ Apz|| = [Ala + p||

et en passant & la borne inférieure sur p, il vient p,(Aa) < |A|pz(a).
Si A = 0, on a clairement égalité car p,(0) = 0, et sinon on obtient

e s 1 ,
I’inégalité inverse en remplagant a par Aa et A par 3 On a donc prouvé

que pz(Aa) = |A|py(a). Comme p, est clairement positive, on vient donc
de montrer que p, est une semi-norme sur E (cf. p.21 pour la définition
d’une semi-norme).

Cherchons maintenant {a € E, p,(a) = 0}. On a clairement p,(a) = 0
lorsque a est sur la droite engendrée par z. C’est le seul cas, car il est
facile de voir que la borne inférieure qui définit p,(a) est atteinte : si
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(An) est une suite de réels telle que ||a + A,z| converge vers p;(a), la
suite (A) est bornée et il suffit d’en extraire une sous-suite convergente
pour conclure.

2. La question précédente montre que toutes les fonctions p, pour
x # 0 sont des semi-normes sur E et il est naturel d’utiliser les p, pour
construire la norme N recherchée. On fait '’hypothese que les vecteurs
Ty, sont tous non nuls : si le vecteur nul apparait dans la suite, il suffit de
considérer la sous-suite formée des vecteurs non nuls de la suite. Celle-ci
reste clairement dense dans E.

Il est clair que la somme d’une norme et de semi-normes est encore
une norme (I'inégalité triangulaire et ’axiome d’homogénéité sont clai-
rement vérifiés et 'axiome de séparation reste vrai). Comme on a une
suite infinie de semi-normes & ajouter, on place un coefficient de maniere
a obtenir une série convergente. Posons donc, pour tout a € E,

+o0 a
N = ol + 3 P2

La série converge car p,, (a) < ||a|]| pour tout n. On en déduit déja que
la]] < N(a) < 2||a|| pour tout @ € E. Ainsi N est une norme sur E,
équivalente a || ||. Il nous reste & démontrer qu’elle a la propriété requise
concernant le cas d’égalité dans I'inégalité triangulaire.

Soit (a,b) € E? tel que N(a + b) = N(a) + N(b). Les inégalités tri-
angulaires sont donc toutes des égalités : on a ||a + b|| = |la|| + |||
et pz, (@ +0b) = py, (a) + ps, (b) pour tout entier n. Montrons que cette
derniere égalité est en fait vraie pour tout vecteur non nul x de E. Comme
la suite (xy)n>1 est dense dans E il nous suffit de vérifier que, a étant
fixé, I'application = — p,(a) est continue sur E\ {0}. Soient x et 2’ deux
vecteurs non nuls. Pour tout réel A on a, par inégalité triangulaire,

par(a) < lla+ A2'|| < fla+ Azl + [Alfl2" — .

Comme |la + Az|| = |M||z|| — |la|| et comme p,(a) < |al|, on peut
2||all
]|
définissant p,(a). Par passage & la borne inférieure on a donc

se restreindre & prendre |A\| < pour calculer la borne inférieure

per(a) < pala) + 2”;“'|'|||x’ .

En échangeant les roles de ' et x on a donc ’encadrement suivant

[lal

2" = || < par(a) < po(a) + 29—l — 2.

pa(a) — 2

[l
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Par le théoreme d’encadrement, on peut donc affirmer que p,/(a) tend
vers p,(a) lorsque 2’ tend vers z. On a donc p,(a + b) = px(a) + p(b)
pour tout vecteur x non nul.

Supposons alors a +b # 0 (si b = —a et si les deux vecteurs ne
sont pas nuls il ne peut pas y avoir égalité dans 'inégalité triangulaire).
Appliquons le résultat précédent avec © = a+b. Comme p,yp(a+0b) =0,
on a forcément p,4p(a) = pats(b) = 0, done a et b sont colinéaires d’apres
le résultat de la premiere question. Si par exemple a n’est pas nul et si
on pose b = Aa, on a alors 1+ [A| = |14+ A| car |[a+b|| = ||a]| + ||b]|. Cela
impose que soit A positif. D’ou le résultat <

Voici maintenant quelques exercices portant sur les notions topolo-
giques suivantes : ouverts, fermés, adhérence, intérieur.

1.14. Sous-espaces fermés

Soient F et G deux sous-espaces d’un espace normé E. On sup-
pose que est F fermé et G de dimension finie. Montrer que F + G
est fermé.

(Ecole polytechnique)

> Solution.

Tout espace de dimension finie pouvant s’écrire comme somme d’un
nombre fini de droites vectorielles, il suffit de montrer le résultat lorsque
G est une droite Re. On peut dans ce cas supposer la somme directe,
sinon F + G = F et le résultat est évident. Soit x,, = f,, + A,e une suite
de F & G qui converge vers x € E. On veut montrer que x € F & G.
Si la suite (A,) est bornée, c’est facile. En effet, on extrait alors une
sous-suite (A,(,)) qui converge vers un réel A. La suite (f,,)) converge
alors aussi, comme différence de suites convergentes, et sa limite f est
dans F car F est fermé. On a alors x = f + Ae et c’est fini. Le méme
argument fonctionne si la suite (A, ) admet une sous-suite bornée (i.e. deés
qu’elle admet une valeur d’adhérence réelle). Si ce n’est pas le cas, c’est
que |A,| tend vers U'infini. Mais alors, comme la suite (z,) est bornée,
e = )\ann + )\in
qui est absurde, car e n’appartient pas a F et F est fermé. <

En prenant F = {0} cet exercice prouve en particulier que tout sous-
espace de dimension finie de E est fermé. Rappelons la preuve la plus
rapide de ce fait. Soit F C E de dimension finie et (xn)n>0 une suite de
F qui converge vers a € E. Cette suite est donc de Cauchy et, comme F
est complet, elle converge dans F. Par unicité de la limite (dans E), on
peut dire que a € F.

fn est limite de la suite (%fn> d’éléments de F, ce
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1.15. Fonctions injectives, surjectives, bijectives

Soit E = €°([0,1],R) muni de la norme de la convergence uni-
forme. On note Z, S et B les parties de E formées des fonctions & va-
leurs dans le segment [0, 1] qui sont respectivement injectives, surjec-
tives, bijectives. Les parties Z, S et B sont-elles ouvertes 7 fermées 7

(Ecole polytechnique)

> Solution.
e [’ensemble 7 n’est pas fermé, car les fonctions f, : © — % (pour

n > 1) sont & valeurs dans [0, 1] et injectives, alors que la suite (fp)n>1
converge uniformément sur [0, 1] vers la fonction nulle qui n’est pas in-
jective.

Il n’est pas non plus ouvert et on va méme prouver que Z est
d’intérieur vide. Soit g € Z. Pour n > 2, notons g, la fonction continue

qui vaut g(0) sur U'intervalle {0, %}, qui coincide avec g sur l'intervalle
2

ot
n

tives et il est facile de voir que la suite (g,,) converge uniformément vers

g sur [0,1]. En effet, pour tout £ > 0, par uniforme continuité de g sur
[0, 1], il existe ng tel que, si n = ng, on a |g(x) — g(y)| < € pour tous z

. 1 2 . ..
, et qui est affine sur {57 ﬁ}' Les fonctions g, ne sont pas injec-

et y dans |0, %} On a alors ||gn — gl|eo < € sin = np. On en déduit que

g n’est pas un point intérieur a Z.

e L’ensemble S est fermé. En effet, soit (f,) une suite de S qui
converge uniformément sur [0, 1] vers une fonction f € E. La fonction
f est encore & valeur dans [0,1]. Soit y € [0,1]. Pour tout n on peut
trouver un réel z,, € [0,1] tel que f,,(x,) = y. Par compacité du segment
[0,1] on peut extraire une sous-suite (Zy(n))n>0 qui converge vers un
point a € [0,1]. Alors la suite fy(n)(Tyn)), qui est constante égale & y,
converge aussi vers f(a) car on a 'inégalité

et le majorant tend vers 0. On a donc f(a) = y par unicité de la limite.
Comme cela vaut pour tout y, on a f([0,1]) =[0,1] et f € S.

On en déduit que S n’est pas ouvert puisque, E étant connexe par
arcs (c’est un espace vectoriel), les seules parties ouvertes et fermées de
E sont () et E. Mais on peut aussi le prouver trés élémentairement : par

. 1 .
exemple les fonctions g, : x — (1 — E) x ne sont pas dans S et la suite

gn)n>1 converge uniformément vers la fonction Idy, 17 qui est dans S.
> (0,1]
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Montrons plus précisément que S est d’intérieur vide. Si f € S, il

suffit de considérer f,, : € — min(f(z),1— %) pour n > 1. Les fonctions

. .. 1 .
frn sont continues, non surjectives et comme ||f — fnllco < —, la suite
n

(fr)n>o0 converge uniformément vers f.
e Comme B est inclus dans S et dans Z, on peut tout de suite dire
d’apres les deux points précédents que B est d’intérieur vide. Enfin B

n’est pas fermé. En effet, soit f,, la fonction continue et affine par mor-
.. . 11 .
ceaux dont le graphe joint les points (0, 0), (5, ﬁ) et (1,1). Il est clair
que fy, est une bijection de [0, 1] sur lui-méme pour tout n > 2. Mais la
suite (fn)n>2 converge uniformément vers une fonction affine f qui est

nulle sur {0, %}, donc non bijective. <

11 est possible de décrire l’adhérence de B. Une fonction f de B est
strictement monotone sur [0,1] avec f(0) = 0 et f(1) = 1 dans le cas
croissant et f(0) = 1, f(1) = 0 dans le cas décroissant. Si une suite
(fn)n>0 de B converge uniformément il est clair que les fonctions f,
dotvent avoir la méme monotonie & partir d’un certain moment (car la
suite fr(0) qui converge et n’a que deux valeurs possibles est station-
naire). On en déduit que l'adhérence de B est incluse dans l’ensemble
des fonctions surjectives et monotones sur [0,1]. En fait il y a égalité.
Par exemple si f est croissante avec f(0) = 0 et f(1) = 1, il suffit de
s+ nf(2)

1+n
s’agit d’éléments de B et il est aisé de voir que cette suite converge uni-
formément vers f. On procéde de facon analogue dans le cas décroissant.

considérer la suite des fonctions fp : x —> pour n = 1. 11

1.16. Adhérence de I’ensemble des polynémes simplement scindés de
Ry [X]

Soient n dans N* et (2,, 'ensemble des polynomes de degré n de
R[X] simplement scindés sur R.
1. Montrer que 2, est un ouvert de R, [X].
2. Trouver l'adhérence de Q,, dans R, [X].
(Ecole normale supérieure)

> Solution.

1. Soient P € Q,,, a1 < --- < «, les racines distinctes de P et des
réels Bo,...,0n tels que By < a1 < f1 < -+ < ay, < Bn. La fonction
P change de signe en chaque ;. On a donc, pour tout i € [0,n — 1],
P(Bz)P(Bz—i-l) < 0. La fonction f :Pr— (P(ﬁo),P(ﬁl), .. ,P(ﬁn)) est
une application linéaire de R,,[X] dans R"*! qui sont de dimension finie
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donc elle est continue, R, [X] étant muni d’une norme quelconque. On
en déduit qu’il existe n > 0 tel que si Q € R,[X] et |Q —P|| <7
alors Q(B;)P(5;) > 0 pour tout i. On a alors, pour tout ¢ € [0,n — 1],
Q(5:)Q(Bi+1) < 0. La fonction Q s’annule sur chaque intervalle |5;, 8;+1],
donc Q possede n racines distinctes et Q € €2,. Donc (2 est ouvert.

2. Nous allons démontrer que ’adhérence de (2, est I’ensemble des
polynémes scindés de R,,[X] auquel on rajoute le polynéme nul *.

Soit P € Q, et (Px) une suite d’éléments de §2,, qui converge vers

P € R,[X]. On note Py, = ¢ H (X — ag,i), out les ay, ; sont les n racines

distinctes de Py écrites dans un ordre quelconque. Considérons pour
1 < i < n, la suite (akﬂ)keN. Soit cette suite possede une suite extraite
bornée, donc une suite extraite convergente, soit aucune suite extraite
n’est bornée et alors il existe une suite extraite qui tend vers +oo. De
(ak,1)ken, on extrait une suite (a,, (k),1)ken qui converge ou tend vers
+o0. Puis de la suite (o, (x),2)ken on extrait une suite (v, o0, (k),2)keN
qui converge ou tend vers +oo. En faisant n extractions successives
©1,---,Pn, Obtient une extraction ¢ = @, o --- o ¢ telle que, pour
tout i € [1,n], (ap(r),i)ren converge ou tend vers oo. Quitte a chan-
ger ordre des racines, on peut supposer qu’il existe p € [0,n] tel que
(Qp(r)1)s -+ (Qp(r),p) convergent vers av, . . ., et les n—p autres suites
divergent vers +oo.
Pour k assez grand, on peut écrire

P n n X
Poty = cotn) [ [X = apmya) TI (—ewm.) 11 (1 - )
1 1

i=1 i=pt1 i=p+ Qo (k),
ﬁ ﬁ X
=di | | (X = aym),i) (1 - ) ;
i=1 ? i=pt1 Qo(k),i

P n
ot d, € R. Quand k tend vers o0, [[ (X —auw),:) Il (1 X )

i=1 i=p+1 Qp(k),i

P

tend vers [[ (X—a;) et Py vers P. Quitte de nouveau a faire intervenir
i=1

une suite extraite, on peut supposer que la suite (dy) converge vers d ou

diverge vers +oo. Si elle converge vers d, on obtient P = d H (X — ;).
i=1

Si elle diverge vers 00, on considere la limite de di Pk, qui est nulle.
k

P
On obtient [ (X — a;) = 0, ce qui est une contradictoire. Ainsi on a
i=1

1. Un polynoéme scindé est par définition non nul.
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P=d ﬁ (X — ;) qui est un polynéme scindé de R, [X] (éventuellement
nul si ;=1: 0).

Soit P € R, [X] scindé. Si P = 0, P est la limite de la suite <%Q),
ou Q est un polynéme simplement scindé de degré n quelconque. On

P
suppose désormais que P # 0, de degré p. On écrit P = ¢ [[ (X — o),

=1
ol ap < ... < o sont les racines de P et ¢ € R*. On se donne des
réels B31,...,Bn—p non nuls, distincts et on considere, pour k € N*, le
polynome

(1 5 i (e
Pr=c (1— ) <X—ai—7).

j=1 kB i=1 k

Alors Py est de degré n et simplement scindé pour n assez grand. En
effet, on a pour 1 < i < p,

i 1+ 1

% < Qjy1+——,

i
o+ - A

A < Qi1+

donc les p dernieres racines sont distinctes. Il en est de méme des n — p
premieres, les kf;, par construction. Enfin, pour tout j € [1,n — p],
lim kB; = oo donc pour k assez grand, on a kf; # a; + L pour tout
k—+o00 p L
(,7). Ainsi Py est simplement scindé. Comme N hr—s{l P,=P,PeQ,.
—+00
Conclusion. L’adhérence des polyndémes de degré n simplement
scindé sur R dans R, [X] est la réunion de {0} et 'ensemble des po-
lynémes scindés. <

Rappelons, en vue de l’exercice suivant, que si A est une partie d’un
espace vectoriel normé E, un point x de A est dit isolé s’il existe une
boule ouverte B de centre x dans E tel que BN A = {z}.

1.17. Théoréme de Cantor-Bendixson

Soit K un fermé de R™. On dit que x € K est un point de conden-
sation si, pour tout voisinage V de z, I’ensemble V N K est non
dénombrable. On note Ck l’ensemble des points de condensation
de K.

1. Donner des exemples o1 Cx = 0, Cx = K, Ck est non vide
et distinct de K.

2. Montrer que Cgk est fermé, que K \ Ck est au plus
dénombrable et enfin que Ck est sans point isolé.

(Ecole normale supérieure)
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> Solution.

1. Le but de cette premiere question facile est de familiariser le can-
didat avec la notion introduite par I’énoncé. Si K est un ensemble fini on
a Ckg = 0. Si K est une boule fermée de rayon > 0 alors Cx = K. Enfin
si on prend K = [-1,1]U {2} dans R on a Ck = [—1, 1] qui est non vide
et strictement inclus dans K.

2. Montrons que Cgk est fermé en utilisant la caractérisation
séquentielle des parties fermées. Soit (x,)n>0 une suite de Ck qui
converge Vers To,. Comme K est fermé, z,, € K et on va montrer qu’il
est dans Ck. Soit V un voisinage de z,, qu’on peut supposer ouvert
quitte a le prendre plus petit. Il existe alors N € N tel que zx € V.
Donc V est aussi un voisinage de xn et comme xyn est un point de
condensation de K, I'ensemble V N K n’est pas dénombrable. Cela
prouve que I, est un point de condensation de K et donc que Ck est
fermé.

Montrons maintenant que K \ Ck est au plus dénombrable. Pour
tout € K\ Ck, on peut trouver une boule ouverte B, centré en x telle
que l'intersection B, NK soit au plus dénombrable. Notons 2 I’ensemble
des boules ouvertes centrées en un point de Q™ et ayant un rayon de

la forme 1 avec p € N*. Il est clair que I’ensemble 2 est dénombrable.
p
Soit p un entier naturel tel que 2 soit inférieur au rayon de B,. Par
p
densité de Q", on peut trouver y € Q" tel que |z — y| < 1 Alors, la
p

boule B de centre y et de rayon % appartient a € et vérifie : x € B et

B C B,. Il existe donc une partie ' de  telle que K\ Cx C U (BNK)
BeQ
ou chaque intersection BN K est au plus dénombrable. Il en découle que

K\ Ck est au plus dénombrable.

Montrons enfin que Ck est sans point isolé en raisonnant par ’ab-
surde. Supposons que z est un point isolé de Ck. On peut donc trouver
une boule ouverte B centrée en = telle que = soit le seul point de Cg
dans B. Pour tout y € KN B distinct de x, on peut donc trouver, comme
précédemment, une boule B, de {2 contenant y et telle que B, NK soit au
plus dénombrable. Il en découle que BNK est au plus dénombrable car il
est inclus dans {z} U (By NK) et 'ensemble des boules B, est au plus

yeK
dénombrable. Cela contredit le fait que x est un point de condensation

de K. «

On a donc montré que K se décompose en la réunion d’un fermé
parfait (sans point isolé) et d’un ensemble au plus dénombrable. C’est
le théoreme de Cantor-Bendizson qui se généralise a n’importe quel es-
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pace métrique séparable (c’est-a-dire contenant une partie dénombrable
dense).

Dans un espace vectoriel normé de dimension infinie les normes ne
sont pas toutes équivalentes et il est important, par exemple lorsqu’on
parle de la convergence d’une suite, de bien préciser la norme utilisée.
Il est tout de méme assez surprenant de voir, dans l’exercice suivant,
qu’une suite donnée de vecteurs peut converger vers n'importe quelle li-
mite fizée a l’avance pour une norme bien choisie.

1.18. Choix de la limite d’une suite

Soit Q un polynéme de R[X]. Construire une norme sur R[X]
telle que la suite (X™),,>0 tende vers Q au sens de cette norme.
(Ecole polytechnique)

> Solution.

Sur un espace de dimension n muni d’une base (ey,...,e,), nous
avons plusieurs normes classiques : par exemple si x = z1e1 + -+ Tpep,
avec (r1,...,%,) € R™ on peut considérer les normes suivantes :

el = leal+ -+ |2nl, 2]z = (/27 + - + 23, [J2]lec = max |z].
1<i<n
Ces normes vérifient toutes ||e;|| = 1 pour 1 <4 < n. On va s’inspirer de
cela pour construire des normes sur R[X].

Posons P,, = 2"(X™ — Q) pour tout n € N. Pour toute norme || ||,
IX™ — Q| = o [Py |. I nous suffirait donc d’avoir ||P,|| = 1 pour tout
n pour conclure. Les polynémes P,, ne forment pas forcément une base.
Cependant si ng = deg@Q on a degP, = n pour n > ng. Modifions P,
pour n < ng, en prenant P, = X™. Alors pour tout n € N, degP,, = n
et la suite (P,,),en est alors une base de R[X]. Pour P € R[X] s’écrivant
MPo + APy + - + A Pg, avec les \; dans R, on pose par exemple

[P|l = max [X].
0<i<k

I s’agit clairement d’une norme sur R[X] avec ||P,|| = 1 pour tout n.

Donc pour n = ng, || X" — Q| = ce qui permet de conclure. <

on”
Le théeme qui termine ce chapitre est la continuité. Les premiers exer-

cices concernent des applications quelconques ; la continuité des applica-
tions linéaires termine le chapitre. La notion de compacité, qui est au
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ceeur du chapitre suivant, sera déja utilisée dans certains exercices, no-
tamment le théoréme important qui affirme que l’image par une fonction
continue d’un ensemble compact est compact et le corollaire suivant :
une fonction numérique continue sur un compact est bornée et atteint
ses bornes.

1.19. Etude de continuité (1)

Soit f : R™ — R™ continue et || || une norme sur R™. Montrer que

la fonction F qui & r > 0 associe F(r) = sup | f(z)| est continue.
lzll<r

(Ecole normale supérieure)

> Solution.

Notons que la fonction F est croissante sur R;.. Elle admet donc une
limite & gauche et & droite en tout point rg avec limF < F(rg) < liI+nF

To To

(seulement & droite en 79 = 0 bien entendu) et il suffit de prouver que
ces limites sont égales a F(ry).

Commengons par la continuité a gauche en un point ry > 0. Soit
e > 0. Par continuité de f et compacité de la boule fermée de rayon r

il existe xq tel que ||zo|| < 7o et F(ro) = ||f(xo)||- Si ||zo| < 70, alors
F est constante sur le segment [||zo||,70] et la continuité & gauche en
o est évidente. Supposons donc que ||zo| = 7. Par continuité de f, il

existe n > 0 tel que || f(z) — f(xo)|| < € pour ||z — o] < 7. Pour de tels
vecteurs x on a en particulier ||f(x)|| = ||f(zo)|| —e =F(rp) —€. On a
donc F(r) > F(rg) — € pour r € [rg — n,7¢] et cela prouve la continuité
a gauche en 7rq.

Montrons maintenant que F est continue a droite en tout ro > 0.
Comme précédemment, pour tout p € N*, on peut trouver un point z,

1 1 .
tel que ||z,| < ro+ ’ et F(ro + 5) = || f(zp)]. La suite (xp)p>1 est

ornée, donc on peut en extraire une sous-suite qui converge vers un
b . d t £ t
point y. Par continuité de la norme on a ||y|| < 7o et par continuité de f

ona|f(y)| = lir+n F. Cela implique que ligrnF < F(rog) et donc forcément
To To
que lirJrnF = F(rp). La continuité a droite est ainsi démontrée. <
To

On étudie maintenant la continuité du minimum d’une famille de
fonctions a un parameétre.
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1.20. Etude de continuité (2)

Soit D un ouvert de R?, K un compact d’un espace vectoriel
normé E et f une fonction continue de D x K dans R. Montrer que
lapplication z — in}f{ f(z,y) est continue sur D.

ye

(Ecole normale supérieure)

> Solution.
Notons ¢ la fonction qui & z € D associe ¢(z) = in}f{f(x,y). Cette
ye

fonction est bien définie car, & z fixé, la fonction y — f(z,y) est conti-
nue sur le compact K (puisque f est continue) donc est bornée (et atteint
ses bornes).

Soit a € D. Montrons que ¢ est continue en a en raisonnant par
I’absurde. Si ¢ est discontinue en a, on peut trouver € > 0 et une suite
(Zn)n>0 de D qui converge vers a, telle que |p(a) — ¢(x,)| > € pour
tout n. Autrement dit, on a soit p(x,) > ¢(a)+e¢, soit p(z,) < p(a)—e,
pour tout n. La compacité de K assure l'existence de y, € K tel que
o(xn) = f(xn,yn). Toujours par compacité de K, on peut supposer,
quitte & remplacer (zn)n>0 €t (Yn)n>o par des suites extraites, que
(Yn)n>0 converge vers un élément b de K. Alors, par continuité de f,
la suite ¢(z,,) = f(@n, yn) converge vers f(a,b) > ¢(a). Par conséquent,
a partir d’un certain rang N, on a forcément o(z,,) = ¢(a) + .

Pour y € Ket n > N, on a f(z,,y) = ¢(x,) = ¢(a) + ¢ dong,
en faisant tendre n vers l'infini, on obtient f(a,y) > ¢(a) + . Cela est
valable pour tout y € K donc p(a)) = ¢(a) + € ce qui est absurde.

Conclusion. La fonction ¢ est continue sur D. <

L’exercice suivant €tudie la continuité de la plus grande racine réelle
d’un polynéme de degré 3.

1.21. Etude de continuité (3)

Soit f I'application qui & (a, b) € R? associe la plus grande racine
du polynéme X3 + aX + b.

1. L’application f est-elle continue 7

2. Déterminer les valeurs du réel a pour lesquelles 'application
fa :b— f(a,b) est continue sur R.

(Ecole normale supérieure)

> Solution.
1. Un polynome réel de degré 3 admet toujours au moins une racine
réelle en vertu du théoréme des valeurs intermédiaires, ce qui justifie
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la définition de f. Plus précisément un tel polynéme possede soit une
unique racine réelle (simple ou triple), soit trois racines réelles distinctes
soit deux racines réelles distinctes dont 'une est double. Si P est scindé
a racines simples, il en est de méme des polynoémes suffisamment proches
de P (voir 'exercice 1.16) et intuitivement la plus grande racine dépend
continiment de P. On va voir que f n’est pas continue en un point (a, b)
qui correspond a une plus grande racine double. Prenons par exemple
P=(X+2)(X-1)? =X?—-3X+2 (la somme des racines de P doit étre
nulle). On a donc f(—3,2) = 1. Pour € > 0 le polynéme

P.=(X+2)((X-1)24¢e)=X*-3-¢)X+2+2¢

a —2 pour plus grande racine réelle. On a donc f(—3 +¢,2 + 2¢) = —2
pour tout £ > 0 ce qui montre que f n’est pas continue en (—3,2).

2. Supposons a fixé. Le fait de faire varier b revient simplement a
translater verticalement le graphe du polynome.

¢ Sia < 0le polyndéme 3X2+q s’annule deux fois sur R et Q = X3+aX
admet un minimum local en z¢g = v/—a/3. On peut trouver une valeur
de b (unique) telle que X3 + aX + b s’annule en x¢, & savoir b = —Q(zg)
(on a b > 0 car x( est compris entre les racines 0 et v/—a de Q). Le réel
xg est alors une racine double de X3 + aX + b et f, n’est pas continue
en b. En effet, pour tout ¢ > 0, X3 4 aX 4+ b+ ¢ admet une unique racine
réelle qui est négative alors que f,(b) = f(a,b) = xg > 0.

e Sia > 0 la fonction x — z° + ax est strictement croissante sur R et
réalise un homéomorphisme de R sur R. Si on note ¢ 'homéomorphisme
réciproque, on a f,(b) = p(—b) pour tout b et f, est donc continue sur
R.

Conclusion. La fonction f, est continue sur R si et seulement si
a > 0, c’est-a-dire si et seulement si X? + aX + b admet une unique
racine réelle pour tout b. <

1.22. Continuité de la composition

Soit E = C%([a, b], R) muni de la norme infinie || ||o et ¢ : R — R
une fonction continue. On définit ¢ : f € E — ¢ o f € E. Montrer
que v est continue.

(Ecole polytechnique)

> Solution.

Soit fy dans E. On veut montrer la continuité de ¢ en fy et pour
cela on cherche & majorer |[¢o f — po fy||leo pour f proche de fy. Notons
[c,d] le segment image du segment [a,b] par I'application continue fj
et posons I = [¢c — 1,d 4+ 1]. Comme ¢ est continue sur le compact I,
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elle y est uniformément continue en vertu du théoreme de Heine. Il va
nous suffire de choisir f assez proche de fy pour que 'image de f soit
incluse dans I. Plus précisément, soit € > 0 et 1 un e-module d’uniforme
continuité de ¢ sur I. On peut bien entendu supposer n < 1. Soit f € E
telle que ||f — folloo < . Pour tout = € [a,b], |f(z) — fo(x)|] < n et donc

c—1< fo(z) —n < f(z) < folz) +n<d+ 1.

Ainsi f(x) et fo(x) sont dans I et on a |o(f(z)) — p(fo(z))| < e. Cela
étant vrai pour tout x dans [a,b], on a ||[po f — p o folle < &.
On vient donc de prouver que 1 est continue. <

L’exercice suivant est facile et concerne la notion de prolongement
par continuité.

1.23. Prolongement par continuité

Soit D={2€C,|z]<1},S={2€C,|z]=1}et f:D— R
une fonction continue telle que, pour tout z € S, f possede un pro-
longement continu f, : DU {z} — R. Montrer que f possede un
prolongement continu & D.

(Ecole normale supérieure)

> Solution.

Bien entendu il n’y a pas le choix pour définir le prolongement de f.
Prenons g : D — R définie par g(z) = f(z) si z € D et g(2) = f.(2) si
z € S. Il est clair que g est continue en tout point de D et il nous faut
simplement prouver que g est continue en tout point zy de S.

Soit € > 0. Comme f,, est continue en 2, il existe r > 0 tel que pour
|z — 20| <7et|z] <1onmait|f(z) — g(z0)| < e. Soit alors z1; € S tel que
|21 — 20| < r. Il existe une suite (u,) de DND(zg,7) qui converge vers z;.
En passant & la limite dans I'inégalité |f(uy,) — g(20)| < € valable pour
tout n on obtient |g(z1) — g(20)] < &.

Bref, on a |g(z) — g(20)| < € pour tout z de D vérifiant |z — 2zg| < 7.
Cela permet de conclure que g est continue en zg et finalement sur D. <

Le résultat se généralise aisément : si D est une partie dense d’un
espace métriqgue E et f : D — R une application continue sur D qui se
prolonge contindment a D U {z} pour tout x € E, alors f se prolonge
continument a E tout entier.

Le résultat de l’exercice suivant est un théoréme de prolongement tres
important et beaucoup plus difficile.
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1.24. Théoréme de prolongement de Tietze

Soit E un espace vectoriel normé, A une partie fermée non vide de
E, f : A — R une fonction continue, telle que ilg‘ff =letsupf=2.
A

Soit g : E — R définie par : g(z) = f(x) pour € A et

g(l‘):aiggjw six ¢ A.

1. Calculer la borne supérieure et la borne inférieure de g.
2. La fonction g est-elle continue ?

(Ecole polytechnique)

> Solution.

1. Remarquons, pour commencer que g(z) est bien défini si « ¢ A.
En effet A étant fermé, d(x, A) = 0 équivaut & z € A. D’autre part, la
fla)|lz — afl

est minorée par 0 donc possede une borne
d(z,A)

fonction a ——

inférieure.
Déterminons la borne supérieure et la borne inférieure de g. Suppo-
sons que z ¢ A. Alors pour tout @ € A, on a ||z — a| > d(z,A) et

donc % > f(a) > 1. D’ott 'on déduit g(z) > 1. D’autre part,
x7
pour tout @ € A, on a f(a) < 2 et donc g(z) < 232£m = 2, par
définition de d(x, A). On a donc 1 < g(x) < 2 pour tout x ¢ A. Comme
gla = f, igff =1 et sup f = 2, on peut donc affirmer que 1 < g(z) < 2
A

pour tout z € E et que i%fg =1et supg=2: g a les mémes bornes
E

supérieures et inférieures que f.
2. Montrons que g est continue en tout point zo de E.

e Supposons pour commencer que o est dans Uouvert E \ A. Au

voisinage de xg, on a g(z) = ﬁ irelgf(a)Hx —al|, car z ¢ A.
s a
La fonction  — d(x, A) est continue sur E, car 1-lipschitzienne. En

effet, pour (z,y) € E? et a € A, on a
d(z, A) < ||z —all < lz =yl +[ly —al.

On en déduit que d(x,A) < [z — y|| + d(y,A) en passant a la borne
inférieure sur a. On montre de méme que d(y, A) < ||z — y|| + d(x, A) et
finalement

|d(z, A) —d(y, A)| < ||z —y.
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Montrons de méme que la fonction h : z — inif(a)Hx —al| est
ac

continue sur E. Pour (z,y) € E? et a € A, on a

fla)llz = all < fa)llz = yll + Fla)lly — al| < 2[jx = y| + f(a)lly - all.

On en déduit h(z) < 2|z — y|| + h(y) et en échangeant les roles de x et
de y, |h(z) — h(y)| < 2||z —y||. La fonction h est 2-lipschitzienne et donc
continue sur E. La fonction g est donc continue sur 'ouvert E\ A comme
quotient de fonctions continues, le dénominateur ne s’annulant pas.

e Si xg est un point intérieur a A, la continuité de g en zy est
immédiate, car g est égale & f sur un voisinage de xg (et f est continue
sur A). Il reste a traiter le cas le plus délicat ou z( est sur la frontiere
de A : dans ce cas, tout voisinage de A contient des points de A et des
points du complémentaire de A. Donnons nous € > 0. Comme f = g|a
est continue en xg, il existe n > 0 tel que,

Ve e ANB(zo,n), |f(z) = fzo)l <& (%)

On a donc déja |g(z) — g(xo)| < € pour z € AN B(xg,n).

Pour z ¢ A, on commence par montrer que si x est assez proche de xq,
on peut se limiter & prendre la borne inférieure sur A N B(zg,7) dans la
définition de g(z). Cela permettra d’utiliser (*) pour estimer g(x). Plus

précisément, prenons z € (E\ A)N B(xo, g) (non vide par hypothese).
Sia € A\B(zg,n), alorson a ||z —al| > 23—77 et d(z,A) < |Jlz — x| < g
On en déduit

llz — all . fla)llz —all
lz — all fla)llz —al| >2>g(x).
dw ) -2 P Ty A=z e
Cela entraine
o o f@le—al
d(.%', A) - aeAr%I]%Ezo;n) HCC a” et g(x) N aEAf%%fwo’n) d(x’ A)

Pour tout a € A NB(xzg,7n), on a d’apres ()

f(xo) —e < fla) < f(zo) +e,
et donc

lz —al _ f(a)llz ~ af

| — al
(F(wo) —e) d(xz,A) d(z,A)

< (f(IO)JFE)d(TA)-

En prenant la borne inférieure sur A N B(zg, n), on obtient

f(zo) —e < g(z) < f(zo) +e.
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On a donc, pour tout = € B(mo, g), lg(x) — g(xo)| < &, ce qui
démontre la continuité de g en xg et finalement sa continuité sur E. <

Si f est une fonction continue et bornée non constante quelconque, on
peut se ramener a une fonction ayant une borne supérieure égale a 2 et
une borne inférieure égale a 1, en la composant avec une fonction affine.
On a donc démontré le résultat swivant : si E est un espace vectoriel
normé et A un fermé de E, toute application continue et bornée de A
dans R peut se prolonger en une application continue et bornée de E dans
R, ayant mémes bornes inférieure et supérieure. 1l s’agit du théoréme de
prolongement de Tietze qui reste valide dans des espaces topologiques
plus généraux.

Il est bien connu qu’une fonction convere de R dans R est
nécessaitrement continue : elle est méme dérivable a gauche et a droite
en tout point. Cela découle simplement du théoréme des pentes crois-
santes et du théoréme de la limite monotone. Dans l’exercice suivant,
on s’intéresse a la continuité d’une fonction convere sur un espace
vectoriel normé réel quelconque.

1.25. Fonctions convexes

Soit E un espace vectoriel normé réel, {2 un ouvert convexe de
Eet f:Q — R une fonction convexe. On suppose qu'’il existe une
boule fermé B(zg,r) incluse dans  sur laquelle la fonction f est

majorée par un réel M.

1. Montrer que |f(z) — f(xzo)| < |M*f(m0r)|”x*$0|| pour

tout = € B(zo, ).

2. Montrer que f est localement majorée (c’est-a-dire que pour
tout z € il existe un voisinage de x inclus dans €2 sur lequel f est
majorée). En déduire que f est continue sur .

3. On suppose E de dimension finie. Montrer que toute fonction
convexe de {2 dans R est continue.

4. Donner un contre-exemple en dimension infinie.

(Ecole normale supérieure)

> Solution.

1. Soit € B(wg,r) que I'on suppose différent de x¢ (sans quoi
le résultat est évident). On va simplement se ramener & une fonction
convexe d’une variable réelle. Posons ¢(t) = f((1 — t)xo + tx) pour

—T<t<TavecT= ﬁ > 1. Le vecteur (1 —t)xzo+ tx reste dans
X — To

la boule fermée B(xg, ) lorsque ¢ parcourt le segment [—T, T} et la fonc-
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tion ¢ est convexe sur cet intervalle et majorée par M. On a ¢(0) = f(xo)
et (1) = f(x). On applique alors le théoréme des pentes croissantes :

< P(1) =9(0) - M — f(zo)
T T

) < IM — f(zo)[lz — x| ,
T

ce qui donne f(x) — f(xg Pour la minoration

on écrit de méme

f(x()%— M = < (1) = ¢(0),

et cela montre la majoration en valeur absolue qui est demandée. Notons
que cela prouve déja que f est continue en xg.

2. Soit z € €. On peut supposer que = n’appartient pas a la boule
ouverte de centre z( et de rayon r, sans quoi le résultat est évident. Soit
n > 0 tel que la boule B(z,n) soit incluse dans 2. Pour majorer f au
voisinage de x, on va considérer des barycentres a coefficients positifs de
points de la boule B(zg,r) et d’un point fixe 2.

On pose z = x+nﬁ~ Alors z € B(z,n) et donc z € Q. Le point
n

x est barycentre de xg et z avec les masses respectives t = ————
|zo — [l +n
wo —ll
lzo — [l +n
y — ty+ (1 —t)z est la boule fermée de centre x et de rayon tr < n (car
lzo — || = 7). Si u est dans cette boule on peut 'écrire u = ty+ (1 —t)z
avec y € B(zg,7) et par convexité de f on a f(u) < tM + (1 —¢)f(2).
Cela montre que f est majorée sur B(x,tr). Le résultat de la question 1
peut alors étre appliqué en n’importe quel point x de 'ouvert €2, ce qui
prouve que f est continue sur §2.

3. Via le choix d’une base on peut supposer que E = R"”. A transla-
tion pres on peut aussi supposer que 'ouvert §2 contient ’origine. Notons
(e1,...,en) la base canonique de R™. On travaille avec la norme infinie

et 1 —¢ = . L’'image de B(zg,7) par ’homothétie affine
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définie par ||z1e1 4+ -+ Tpenlloo = max |z;| ce qui est possible puisque
1<ign

toutes les normes de R™ sont équivalentes. Soit » > 0 tel que la boule
de centre l'origine et de rayon r soit incluse dans 2. Tout point de cette
boule est barycentre a coefficients positifs des 2" sommets (e17,...,e17)
avec g; = £1 pour tout ¢ (pour une justification précise, cf. exercice 1.5,
question 1). Par inégalité de convexité on en déduit que f est majorée
sur B(0,7) par M = (617...,161;%{&1}” fleir, ... enr).

4. 1l suffit de prendre une forme linéaire non continue pour avoir un
exemple de fonction convexe non continue, ce qui est possible en dimen-
sion infinie. En effet, si E n’est pas dimension finie, on peut trouver dans
E une famille libre dénombrable (e, )nen formée de vecteurs unitaires.
On note F 'espace engendré par les vecteurs e, et G un supplémentaire
de F dans E. Il existe une unique forme linéaire sur E tel que f(e,) =n
pour tout n et f(x) =0 si z € G. La fonction f n’est pas bornée sur la
boule unité, donc n’est pas continue. <

L’exercice suivant appartient a la topologie algébrique. Il démontre
un résultat équivalent au théoreme de Brouwer.

1.26. Rétraction du disque unité sur une partie du cercle

On munit R? de sa structure euclidienne usuelle. Soit B le disque
unité fermé et S le cercle unité. Déterminer les ensembles A inclus
dans S tels qu'il existe f : B — R? continue, vérifiant f(B) = A et
fia = Ida. On utilisera le théoreme de relevement continu.

(Ecole normale supérieure)

> Solution.

Une partie A vérifiant la propriété de 1’énoncé est appelée un rétract
de B et l'application f est alors une rétraction de B sur A. Comme B
est connexe par arcs et compact, il en est de méme de son image par une
application continue. Ainsi A est nécessairement un arc fermé du cercle
S. On va montrer qu’on peut obtenir n’importe quel arc fermé excepté
le cercle S tout entier (résultat connu comme le lemme de non-rétraction
de Brouwer).

e Prenons pour A un arc fermé du cercle S, distinct de S,
d’extrémités a et b. On donne une définition géométrique d’une
rétraction f de B sur A.

Soit = € B. Si a et b sont diamétralement opposés, on prend pour
f(z) le point d’intersection de A et de la perpendiculaire & (ab) contenant
x. Si a et b sont ne sont pas diamétralement opposés, on note ¢ le point
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d’intersection des tangentes & S en a et b et, pour tout x de B, f(z) est
le point d’intersection de A et de la droite (cz).

L’application f est continue sur B car la perpendiculaire & (ab) conte-
nant x ou la droite (cz) selon les cas, dépendent contintiment de x. Il est
par ailleurs clair dans les deux cas que f induit I'identité sur A.

e On montre maintenant que S n’est pas une rétraction de B en
raisonnant par I’absurde. Soit f : B — S continue telle que f|; = Ids.
Nous utiliserons le théoreme de relevement suivant, en identifiant S a
I’ensemble des nombres complexes de module 1 et B a ’ensemble des
nombres complexes de module inférieur a 1.

Lemme. Soit f : B — S une application continue. Il existe une appli-
cation continue ¢ : B — R telle que, pour tout x € B, f(x) = e*¥(®),

Démonstration.

Ce résultat peut se démontrer a partir du théoreme de relevement des
chemins continus qui s’énonce ainsi : si g est une application continue de
[0,1] dans S et 6y un argument de g(0), il existe une unique application
continue 6 : [0,1] — R telle que, pour tout ¢t € [0,1], g(t) = €@ et
6(0) = by.

En effet, soit 6y un argument de f(0). Pour tout z € B, on consideére
Papplication f; : [0,1] — S définie par f,(t) = f(«xt). La fonction f,
est continue et 6y est un argument de f,(0) = f(0), donc il existe une
application 6, : [0,1] — R telle que, pour tout ¢ € [0,1], f(t) = €=
et 0,(0) = 6p. On pose, pour tout x € B, p(x) = 0,(1). La fonction
¢ : B — R vérifie, pour tout = € B, f(z) = f,(1) = ¢=(1) = ¢i¢(®),

Il reste & montrer que ¢ est continue. Soit € € |0, g [ Pour tout

couple (01,605) € R% on a

, ] 6
e — ¢i%2] = 2 |sin :25111%,

01 — 0y
2
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ou € |-, m| est la détermination principale de 6; — 63. On en déduit,
6]

puisque 5 € [0, g], par concavité de la fonction sin sur [O, g], que

2" Jo] _ 2|9|
2

it — eif2| > 2. 2 - On obtient
m

. 2e
et — Z‘9"‘|< =3k €Z, 60;—0y¢c[—c+2km e+ 2kn].

Par le théoreme de Heine, la fonction f est uniformément continue sur
le compact B. Il existe donc a > 0 tel que, pour tout (x,y) € B2,

|t —y| <a=|f(z) - fy)| < —

Si |z —y| < a, on a |zt — yt| < « pour tout t € [0, 1],

o) = £y (0] < 2, Cestrandire [e%=(0) — )] <
s

que, pour tout ¢t € [0, 1], il existe k € Z tel que

t par conséquent
13

e
2 On en déduit

3
0,(t) — 0,(t) € [—e + 2km, e + 2kn].

La fonction 6, — 6, est continue sur [0, 1] et s’annule en 0. Comme I'in-
tervalle [—¢, €] est de longueur strictement inférieure & m, les intervalles
[—e + 2km, e + 2kw] (k € Z) sont disjoints et on a, pour tout ¢ € [0, 1],
0:(t) — 0y(t) € [—¢, €] et en particulier, |p(x) — p(y)| < €. Cela démontre
la continuité uniforme de . $

Soit ¢ : B~ R telle que, pour tout = € B, f(r) = e#(*) Pour tout
t € R, on a en particulier f (e') = (¢’ ) = ¢t car et € S. On en déduit
que, pour tout réel t, p(e') — ¢ € 2nZ. La fonction t — ¢(e't) —t est
continue et & valeurs dans un ensemble discret, donc est constante : il
existe kg € Z tel que, pour tout réel t,

(™) —t = 2ko.
Mais on a alors, pour tout réel t,
® (ei(t+2”)) =t 421 + 2kom = () + 27 £ ¢ (e”) )

ce qui est impossible.

Conclusion. Les ensembles A cherchés sont les arcs fermés de S,
différents de S. <

De la mon-existence d’une rétraction de B sur S, on peut déduire le
théoreme de Brouwer : toute application continue de B dans B admet au
moins un point fize.

Raisonnons par l’absurde, en supposant que [’application continue
g : B — B nadmette pas de point fize. Pour tout x de B, la droite
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passant par x et g(x) coupe S en deux points. On note f(x) celui qui
vérifie x € [f(x),g(z)]. Il existe t € R_ tel que f(x) =z + t(g(x) — ).
En écrivant que f(x) appartient & S et en prenant la valeur de t négative,
on obtient

(2, 9(x) — ) + /{2, g(@) — 1) + (1 — |&[?)[lg(x) — z||*
lg(x) — |2
Si||lz|| =1, alors (z,g(z)—x) = (x,g(x))—1 < 0, car x et g(x) sont deuz

points distincts de la boule B donct = 0. On définit ainsi une application
[ : B =S continue, telle que f|, = Ids. C’est impossible.

t=—

Rappelons quelques points essentiels sur la continuité des applications
linéaires. On se donne deux espaces vectoriels normés sur K (qui vaut R
ou C) E et F et f une application linéaire de E dans F. Les propriétés
susvantes sont alors équivalentes :

(i) f est continue;

(i) f est continue en 0 ;

(#i1) f est lipschitzienne;

(iv) f est bornée sur la sphére unité.

Dans ce cas, la plus petite constante de Lipschitz de [ qui vaut

1/ (@)l

sup - = sup | f(z)||r est appelé la norme triple de f re-
cei\foy  lI7le llz|p=1
lativement auz normes prises sur E et F. On note cette quantité || f|| et
on vérifie facilement qu’elle définit une norme sur l’espace des applica-
tions linéaires continues de E dans F que nous noterons L.(E,F).
Le premier exercice est trés classique et caractérise les formes
linéaires continues.

1.27. Caractérisation des formes linéaires continues

Soit E un espace vectoriel normé et f une forme linéaire non
nulle. Montrer que f est continue si et seulement si son noyau est
fermé.

(Ecole polytechnique)

> Solution.

Si f est continue, son noyau qui est I'image réciproque par I’applica-
tion continue f du fermé {0} est un fermé.

Réciproquement, supposons Ker f fermé et f non continue. Comme
f est linéaire, elle n’est pas bornée sur la sphere unité. Il existe donc une
suite (z,,)nen de vecteurs de E, de norme 1, telle que |f(z,)| > n. Soit u
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un vecteur quelconque de E. Posons, pour tout n € N, u,, = u— ff((mu)) Ty
Alors u,, appartient & Ker f. Or
|f(w)] |f ()]
lw—un| = o = — 0.

Donc la suite (u,)n>0 converge vers u, qui est donc dans Ker f, puisque
celui-ci est fermé. Cela étant vrai pour tout vecteur u, on en déduit que
f = 0. Cela est contradictoire avec I’hypothese de la non continuité de f.
Donc f est continue et I’équivalence est établie. <

Dans ’exercice suivant, on s’intéresse a la norme triple d’une forme
linéaire continue et on caractérise le cas ou celle-ci est atteinte.

1.28. Norme d’une forme linéaire continue

Soit E un espace vectoriel normé et f une forme linéaire continue
non nulle sur E. Soit 2 € E tel que f(zo) # 0.

X
1. Montrer que || f| = %-
2. Montrer I’équivalence suivante :
da € E = @ b e K —b| =d K
a € \{0}7 |||f|” - ||CI,|| — € erf’ on || - (an erf)'

3. On prend E = C°([-1,1],R) muni de la norme de la conver-
1 0

gence uniforme et f : x € E / T — x. Montrer que f est

linéaire continue et calculer || f|. Existe-t-il un vecteur a non nul de
E tel que |f(a)| = [[f[llla]l?

(Ecole polytechnique)

> Solution.
1. Notons pour commencer que d(xg, Ker f) > 0, car Ker f est fermé
et zop ¢ Ker f. Siz € Ker f, on a

|f (o)l = |f(z0) = f(@)] < fllzwo — |-

Comme cela vaut pour tout vecteur x de Ker f on en déduit, en passant
a la borne inférieure, que |f(zo)| < || flld(zo, Ker f).

Pour démontrer I'inégalité inverse, considérons un vecteur x quel-
conque de E. Comme E = Vect(zo) @ Ker f il existe un scalaire \ et
un vecteur y € Ker f tels que 2 = Azg + y. On a alors f(x) = A\f(x).
Supposons A non nul, c’est-a-dire x ¢ Ker f. On a alors



46 CHAPITRE 1. ESPACES VECTORIELS NORMES

1
xo + )\yH d(zo, Ker f)

et par conséquent,

[ [I].f (zo)|
Cette majoration reste vraie lorsque = € Ker f. On a donc par définition
. |f(l"0)| s N ‘o
de la norme triple |f]| Ao Ker ) D’ou le résultat par double

inégalité.

2. Supposons qu’il existe b € Ker f qui réalise la distance de z( a
Ker f et posons a = xo—b. On a f(a) = f(xo) et ||la|| = d(zo, Ker f). Par
@) _  [fxo)l  _ :

lall — d(zo,Ker f) 11l s
sinon il suffit de prendre —a.
Réciproquement supposons ’existence d’un vecteur a non nul tel que

conséquent

f(a) > 0 alors a convient;

- Il existe donc € € {£1} tel que & Tg).
1= 1@ (1) tel que fa) = e 7Ll ()
Posons alors b = z¢ — ¢ d(m()"li(uer D, On a f(b) = 0, donc b € Ker f,
et ||lxzg — b|| = He%a“ = d(zo, Ker f). D’ou I’équivalence de-
mandée.

3. La linéarité de f découle simplement de la linéarité de I'intégrale.

On a par inégalité triangulaire
1 0
< el [ ol < 2ol

0
+/:v
J-1

pour toute fonction = € E. Donc f est continue et || f] < 2. Montrons
qu’il y a en fait égalité. Pour n € N* considérons la fonction u,, € E

|f(@)] <

. 1
affine par morceaux, qui vaut 1 sur le segment {ﬁ , 1} , —1 sur le segment

{—1,—1} et * — nzx sur {—l, l} On a ||up|lec = 1 pour tout n
n n n
et il est facile de voir (en interprétant l'intégrale en terme d’aire) que

flup) =2— % Par conséquent on a bien || f] = 2.

Montrons maintenant qu’il n’existe aucune fonction non nulle a telle
que | f(a)| = 2||a]|c- Raisonnons par 'absurde en supposant qu’une telle
fonction a existe. On peut supposer ||a]loc = 1 par homogénéité. Comme
|a| est continue et

1
2=1f@)| < [ ol <2lalle =2,
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on a nécessairement |a| = 1 sur [—1,1]. Donc a est constante, égale & 1
ou a —1, et son image par f est nulle, ce qui est absurde. <

Le lecteur trouvera dans l’exercice 3.9 une condition suffisante sur
l’espace E pour que la norme triple de toute forme linéaire continue sur
E soit atteinte.

L’exercice suivant rappelle qu’en dimension infinie, les normes ne
sont pas toutes équivalentes. La continuité d’une application linéaire
dépend donc de la norme choisie.

1.29. Normes sur R[X]

1. Soit E = R[X]. Donner deux normes non équivalentes sur E.

2. Soit D 'opérateur de dérivation. Donner un exemple de norme
pour laquelle D est continu, et un exemple de norme pour laquelle
D n’est pas continu.

3. Soit M I’endomorphisme de E qui, au polynéme P, associe le
polynome XP. Existe-t-il une norme sur E qui rende simultanément
D et M continus ?

(Ecole polytechnique)

> Solution.
1. On peut définir de nombreuses normes sur R[X]. On peut poser

n n
pour tout polynéme P = 3 a;,X* N1 (P) = max |ag|, No(P) = Y |ak]
k=0 0ksn k=0

n
et plus généralement N3(P) = > pglax|, out (pg) est une suite de réels
k=0
strictement positifs. Il est clair qu’on définit ainsi des normes sur R[X].
Soit P, =1+ X+ --- 4+ X" On a, pour tout n € N, Ny(P,) = 1 et

— : NQ(Pn)
Ny(P,,) = n+ 1, donc nll}g-loo N, (Po)

= 4o0. Les normes Ny et Ny ne

sont pas équivalentes.
2. Pour tout n € N*, on a N;(D(X")) = N;(nX" 1) = n, Ny (X") et
N (D(X™)) N:1(D(P))
Ny (X7) N1 (P)
varie dans R[X] \ {0}, donc D n’est pas continu pour la norme N;. Pour
la méme raison, D n’est pas continu pour la norme Ns.

donc = n. Le rapport n’est pas majoré quand P

n
Considérons la norme Nj, avec pp = k!. Soit P = Y a;X*. On a
k=0

n n—1
donc D(P) = ¥ apkX* "1 = 3 aj11(j +1)X/. On en déduit
k=1 =0
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n—1 n—1
N3(D(P)) = > |ajp|(G + 1)t =D lajs|(G + 1)
7=0 7=0

= Z |ak|k' Z ak|k:' )

L’endomorphisme D est donc continu pour la norme Nj.

3. Supposons qu'une telle norme existe. Il existe des constantes k et
k' telles que, pour tout P € R[X], |M(P)|| < k||P| et [|[D(P)| < &'||P].
On obtient alors, pour tout n € N,

InX" || < IM(nX" "] < El[nX" 7| < KIDX™)]| < BE[IX].

Comme || X™|| # 0, car X™ # 0, on en déduit n < kk’ pour tout n € N,
ce qui est impossible. Ainsi, il n’existe pas sur R[ ] de norme rendant D
et M simultanément continus. <

On pouvait également remarquer que Do M — Mo D = Idgx;. Il
est alors classique d’aboutir a une contradiction si l’on suppose D et M
continues (voir exercice 1.33).

Voici un exemple d’étude de la continuité d’une forme linéaire en
dimension infinie.

1.30. Continuité d’une forme linéaire

Soit E = CY([0,1], R) muni de la norme || ||; définie pour f € E
1
par [[flly = [ ()]t
1. Soit g € E. Montrer que I'application uy, : E — R définie

1
par ug(f) = /0 g(t) f(t)dt pour tout f € E, est une forme linéaire
continue sur E et calculer sa norme triple.

2. La forme linéaire B : f — /01 %dt, dont on justifiera la

définition, est-elle continue sur (E, || ||1)?

(Ecole polytechnique)

> Solution.
1. Il est clair que uy est une forme linéaire. Par ailleurs, on a

vreB, lu(l=|[ s s < [ o s < lolel i

Donc ug est continue et [Jugy]| < [|g]loc- On va montrer qu'en fait il y
a égalité. Comme g est continue sur le compact [0,1], elle atteint ses
bornes. Il existe donc zg € [0, 1] tel que |g(xo)| = [|g/co- Quitte & prendre
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—g (puisque u_y = —ugy et donc |Ju_gf| = [|ugl|), on peut supposer que
9(x0) = ||g]|oc- L'idée est de prendre une suite de fonctions (f,)n>1 qui
< concentre la masse » en xg. Précisons cela. On suppose zy € ]0,1],
laissant au lecteur les modifications mineures a faire lorsque zg est au
bord. Pour n assez grand, on considere la fonction f,, continue, affine

par morceaux, nulle sur {O,xo — %] U {xo + %,1] et qui vaut n en xg.
On a || fu]l1 = 1 et on va montrer que |ugy(fyn)| tend vers g(zo) = ||g|loo

lorsque n tend vers 'infini. Soit € > 0. Comme g est continue en zy, il
existe 1 > 0 tel que |g(z) — g(zo)| < € lorsque |x — x| < 7. Soit N tel

que T < 7. Alors, pour n > N,

zo+ zo+
= [ snsaat = [ gteopa(t)at

To— 5,

N

zo+1
5/ Fa(t)dt = .

1
0™ %

Onadonc lm fug(fa)l = g(zo) = llglloc et fugll = llg]loo-

2. L’application B est bien définie car si f est continue, la fonction

f(t)

t— T est intégrable sur |0, 1]. Pour n > 2, on considére f, définie
1. 1 . 1 o
par fn(t) = 7i site {g,l} et fr(t) =+/nsite [0, E} Il s’agit d’une

fonction continue. On a

Lde Ldt
< — = = — = .
Il < [ z=2 et B [, G =

Il en résulte que B n’est pas continue. <

L’exercice suivant est trés proche du précédent, mais un peu plus
difficile.

1.31. Calcul d’une norme triple

Soit E = C°([0, 1], R) muni de la norme || ||; définie pour f € E,
1
par ||f]1 = /0 |7|. On considere I'application ® qui & f € E associe

I’application x — /Om fop ou @ est fixée dans E.

1. Montrer que ® est un endomorphisme continu de E.
2. Calculer la norme triple de ®.

(Ecole polytechnique)
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> Solution.
1. Tlest clair que si f € E, alors ®(f) € E et, comme ® est linéaire,

c’est bien un endomorphisme de E. Pour montrer que ® est continue, on
se contente de majorer grossierement | ®(f)||; pour f € E :

dt‘dx // (t)|dt dz
< Jlolloo / / Bdt dz

<l / 17111 dz < llooll 11

@l =

Cette inégalité valable pour tout f € E montre que ¢ est continue.
2. Pour calculer la norme triple de ®, on raffine la majoration ci-
dessus. En intégrant par parties, on voit que, pour f € E,

/ / (t)/dt dz = [(x - [ ) Ifsal]: - (& - Dl @)p(e)ld

et le crochet est nul. On a donc

@)l < /O (1 = 2)[f(2)p(z)ldz < Sl[lopl](l —)lp(@)l[| £l

[AS

pour tout f € E et par conséquent, ||®|| < MouM = sup (1—z)|p(z)|.
z€(0,1
Montrons qu’il y a en fait égalité. Comme ¢ est cor[ltil]lue, la borne
supérieure M est atteinte en au moins un point zy. Quitte & rempla-
cer ¢ par —¢p (ce qui change ® en —® et ne change pas la norme triple),
on suppose ¢(xg) > 0 (si ¢(xg) = 0 c’est que ¢ est nulle et dans ce
cas ® aussi). En prenant, comme dans l’exercice précédent, une suite de
fonctions positives f,, d’intégrale 1, qui concentre la masse en xg, on
voit que || ®(fn)|l1 = M.
Conclusion. On a ||®|| = sup (1 —x)|p(z)|. <
[

ze|0,

1.32. Etude de continuité

On note E lespace vectoriel des fonctions réelles continues
d’intégrale nulle sur [0, 1]. Pour f € E, on note 9 (f) 'unique primi-
tive de f qui est dans E.

1. Montrer que v est endomorphisme continu, lorsque E est
muni de la norme uniforme.
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2. Etudier la continuité de 1, lorsque qu’on munit E de la norme

re . 1
Il définie par [|flls = ["|f].

(Ecole polytechnique)

> Solution.
1. On va commencer par donner une expression intégrale de ¥(f),

X
pour tout f € E. Les primitives de f sont les fonctions x — /0 f@®)dt+c
ou ¢ est une constante. L’unique primitive d’intégrale nulle est obtenue

1 rz
en prenant ¢ = — /0 /0 f(t)dt dz. Calculons cette intégrale, en intégrant
par parties :

1

1 T T 1
/O /0 F(t)dt do = [(x - 1)/0 f(t)dt]o - /O (@ — 1) f(z)dz,
ce qui vaut — /01 (x — 1) f(z)dx car le crochet est nul. On a donc
1

b)) = / " f(t)ae+ | == / Cif(n)de+ [ =i

0 x

La linéarité de v est claire. On obtient

() @)] < (“‘2 " “‘2>) 17]c-

Or, pour tout z € [0,1],onaz?+ (1 —2z)> =1+2z(z —1) < 1. ll en

résulte que [|(f)|oo < 5 || flloo, donc que 4 est continue avec ||| < 3

2. Sionreprend expression de 1 ( f) ci-dessus on a aussi pour tout z,

T 1
@< [+ [ 1=k

Ainst [[(f)lloo < [fll1 et a fortiori [(f)l[x < [If]l1- Donc ¢ est aussi
continue lorsque E est muni de la norme || |j;. <

1.33. Crochet de Lie (1)

Soient E un espace vectoriel normé, u et v deux endomorphismes
continus de E. On suppose que uov —vou = aldg.

1. Montrer que pour tout n € N*, u? ov — vou” = anu™ .
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2. Montrer que u et v commutent.
3. Donner une autre preuve si E est de dimension finie.
(Ecole normale supérieure)

> Solution.

1. Montrons 'identité demandée par récurrence sur n. Elle est vraie
pour n = 1 par hypothése. Supposons qu’elle est vérifiée au rang n. Alors
en composant I'égalité u™ov = anu™ ' +vou” & gauche par u, on obtient

u"ov = anu"+uovou™ = anu"+(voutaldg)ou™ = vou T fa(n+1)u",

ce qui est la relation voulue au rang n + 1.
2. Prenons la norme triple de l’identité que nous venons de
démontrer. On a pour tout n > 1,

nlalflu" 7 = Ju" o v —vou™| < 2utllvll < 2u" lullvl

par sous-multiplicativité de la norme triple. Distinguons alors deux
cas :

e Si w1 # 0 pour tout n > 1, on peut simplifier par |Ju" | et on
en déduit que la suite |a|n est majorée ce qui impose évidemment a = 0.
Donc u et v commutent.

e Supposons qu’il existe p = 0 tel que u? = 0 (c’est-a-dire que u
est nilpotent). Si a n’est pas nul et p > 1, l'identité de la premiere
question écrite au rang p permet de dire que uP~! = 0. Une récurrence
descendante finie donne alors u = 0 et cela contredit ’hypothese a # 0.
Dans ce second cas, on a donc aussi a = 0.

3. Si E est de dimension finie non nulle (sur le corps R ou C) alors
en prenant la trace de la relation uov—vou = aldg il vient adimE = 0
ce qui prouve directement que a = 0. <

Lorsque le corps de base n’est pas de caractéristique nulle, il peut étre
possible d’écrire Idg sous la forme uwo v — v owu. Le lecteur pourra se
reporter a l’exercice 6.17 du tome 1 d’algébre.

L’énoncé suivant concerne encore [’étude d’un endomorphisme
continu ¢ qui s’écrit comme un crochet de Lie, c’est-a-dire sous la forme
c=aob—boa.

1.34. Crochet de Lie (2)

Soit E un espace vectoriel normé, a et b dans L.(E) et ¢ = ab—ba
(pour simplifier, la composition est notée par simple juxtaposi-
tion). On suppose que les endomorphismes ¢ et a commutent et on
consideére application ¢ : L.(E) — L.(E) qui & x associe ax — za.

1. Montrer que ¢ est linéaire et continue.
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Vérifier que pour tout (u,v) € L.(E)?, §(uv) = §(u)v+ud(v).
Calculer §2(b) puis §™(b"™) pour tout n € N*.

On suppose E de dimension finie. Montrer que c est nilpotent.
Dans le cas général, montrer que ngr}rloo ™M™ = o.

ANl ol N

6. En déduire que ||c — Idg|| > 1 et que ¢ n’est pas inversible
dans lalgebre L.(E).

(Ecole polytechnique)

> Solution.

Afin d’alléger les notations, nous noterons simplement ||| au lieu
de || || la norme triple sur £.(E) subordonnée & la norme de E (cette
derniére n’intervient pas dans l’exercice).

1. La linéarité de § est claire. Pour tout = € L.(E), on a par sous-
multiplicativité,

16(2)[ = llaz — zal| < [laz|| + zall < 2[|a]|||z]|

donc § est continue et on a méme ||0]| < 2||al.
2. Pour (u,v) € L.(E)?, on a

d(uv) = auv —uva = auwv + u(—va + av) — uav
= (au—ua)v + ud(v) = §(u)v + ud(v).

Cela prouve que ¢ est une dérivation de 'algebre L.(E).

3. On a §%(b) = d(c) = 0, car ¢ et a commutent. Comme § est une
dérivation, elle vérifie la formule classique de dérivation d’un produit de
n termes :

oay...an) = Z ay ...ap—10(ag)ags - - - Gy
k=1

Il suffit de faire une récurrence sur n pour le prouver. Il s’ensuit que

) =Y bs(b)b k.
k=1

Appliquons encore une fois § sur cette relation. On prend l'image de
chaque terme b*~1§(b)b™~* par 4. Il s’agit d'une somme de termes n — 1
termes du type b...bd(b)b...b5(b)b...b ou 'un des 0(b) est en k-ieme
place (le terme b*~152(b)b™~* est nul d’apreés ce qui précede). Au total
il vient

FOM)y = > b...b 5\@ b...b 5\@ b...b

< <
1\4611;’552\” ki-iéme place  ko-iéme place
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Quand on applique § a un terme de la somme ci-dessus, on obtient une

somme de n — 2 termes (les deux autres sont nuls car §2(b) = 0) du type
b...b6(b)b...bd(b)b...b3(b)b...b. On a donc

FBery= > b...b 5(b) b...b 5(b) b...b 6(b) b...b
léiléfi’ikfijn ki-iéme place ko-iéme place ks-ieme place

En réitérant ainsi application de ¢, on trouve & la fin

SOy = > (D). 6(b)...6(b) = nld(b)" = nlc".
1<k, kn<n
ki#k; siiAj
Conclusion. On a §™(b"™) = nlc™.

4. Pour tout n € N*, on a donc ¢" € Im¢. Or, E étant ici de dimen-
sion finie, on a pour tout € L(E), Tr(az) = Tr(za) donc Trd(z) = 0.
Ainsi Trc¢™ = 0 pour tout n > 1 et c’est un exercice classique d’en
déduire que c est nilpotent (voir l'exercice 2.33 du tome 2 d’algebre, ou
le lecteur en trouvera trois preuves différentes).

5. Ona [l = —[|6"(0")] < 8" o™ < — 5] [[]]". Done

ISHiol

nyl/n <
||C H ~ (nl)l/n n—s4o0

car (par exemple avec la formule de Stirling) on a Inn! ~ nlnn donc
(n!)» — +oo. Ainsi, lim [¢"||= = 0.
n—-+o0o
6. Raisonnons par 1’absurde et supposons |c — Idg || < 1. On essaie

d’obtenir une contradiction avec le résultat précédent et pour cela, on
cherche & minorer ||¢™||. On pose d = ¢ — Idg. On a alors, pour n > 1,

le™ | = lle" " Adg +d)[| = [le" ™" + "7l > "] = [le"~d]|
> e H = Nl el = [lemHI = lid]).

On a donc, pour n > 1,
el = llell( — [laf)"

On en déduit

1/n
n 1/n> HC” _ _
e > (25) = ) S 1 Bl > 0

ce qui est absurde d’apres la question précédente. On a donc montré
que |[c—Idg | > 1.
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Pour terminer montrons que ¢ n’est pas inversible en raisonnant tou-
jours par ’absurde. Si ¢ est inversible on a

L= [le"e™ | < lle™lle™ "

pour tout n > 1 et donc

1 1/n 1
n|l/n > _ >0
1> () = ey > O

ce qui contredit a nouveau le résultat trouvé a la question précédente.
On conclut que ¢ n’est pas inversible. <

Si || || est une norme sur R™, elle induit une norme triple sur M, (R)

définie par ||A|| = sup ||AX|| pour toute matrice A. Cela revient sim-
IX]/=1

plement a identifier la matrice A avec l'endomorphisme de R™ qui lui
est canoniquement associé. Une telle norme sur M, (R) n’est pas quel-
conque : ¢’est une norme d’algébre qui vérifie |AB| < ||A||||IB|| pour tout
couple (A,B) € M,,(R)? et aussi ||I,] = 1.

1.35. Conditionnement d’un systéme linéaire

Soit g une norme sur R™ et v la norme triple qu’elle induit sur
M, (R). Soit A € GL,(R), X, Y,z et y des vecteurs de R" tels que
AX=Y et AX+2z)=Y+vy.

u@><cmw
uw(X) o p(Y)

2. Calculer v(A) puis v(A)v(A~1) lorsque p est la norme eucli-
dienne canonique de R".

1. Trouver ¢ € R ne dépendant que de A tel que

(Ecole polytechnique)

> Solution.

1. Par hypothese, on a A(X+2) =AX+Az=Y+Az =Y +yet
donc Az = y. Comme A est inversible, on en déduit que z = A~'y. On
a donc les majorations

p(x) = pAy) SvA Nuly) et p(Y) = p(AX) < v(A)u(X)

n(Y)’

La constante ¢ cherchée est égale & v(A)v(A™1).
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Partant du systéeme linéaire AX =Y, X 4+ x apparait comme la so-
lution d’un systeme perturbé AX' = Y + y. Si la constante ¢ est pe-
tite, la majoration ci-dessus montre qu’une petite perturbation du se-

cond membre entraine une petite perturbation de la solution. On dit que
1 1

= = ————— estle conditionnement de la matrice A relativement a
c v(A)v(A-1)
la norme p. On remarque que ¢ = v(A)v(A=Y) > v(l,) > 1. Un systéme
est dit bien conditionné lorsque c est voisin de 1.

2. Examinons le cas ou p est la norme euclidienne canonique || ||

de R™. On a

v(A)? = sup ||AX|]? = sup (AX,AX) = sup (*AAX, X).
(A) p p , p ,
IX]|=1 IX[I=1 IX[I=1

Or la matrice *AA est symétrique positive (et méme définie positive ici
puisque A est inversible) donc elle se diagonalise dans une base ortho-
normée de R™. Notons 0 < A\; < --- < ), les valeurs propres de *tAA
rangées dans l'ordre croissant. En décomposant X dans une base or-
thonormale de vecteurs propres associés aux \; il est facile de voir que

sup (*AAX,X) =\, (voir l'exercice 1.5 dans le tome 3 d’algebre). Par
IX]1=1

conséquent v(A) = /), est la racine carrée de la plus grande valeur
propre de ‘AA.

On peut appliquer ce résultat & A=L. Or tA=1A~! = (AtA)~L Et
AtA = A(*AA)A~! est semblable & ‘AA donc elle a le méme spectre.

Les valeurs propres de (A *A)~! sont donc les )\i et la plus grande d’entre

1
elles est S

Conclusion. On a donc ¢ = v(A)y(A~1) =,/ i\\—”, ol A\, et A; sont
1

respectivement la plus grande et la plus petite valeur propre de la ma-
trice tAA. <

Si A € M, (C) on appelle rayon spectral de A le module mazimal
des valeurs propres de A : p(A) = max, |A|. Cette définition vaut aussi
€5p

pour A réelle, mais en prenant toujours les valeurs propres complexes.
Assez naturellement, le rayon spectral gouverne le comportement de la
suite (AF)g>o (voir les exercices 2.59 et 2.60 du tome 2 d’algébre). Dans
l’exercice suivant, on montre que le rayon spectral est majoré par toute
norme triple.
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1.36. Inégalité entre le rayon spectral et la triple norme

On munit R™ d’une norme ||| et on note || la norme triple
induite sur M, (R). Soit A € M,,(R).

1. Montrer que p(A) < |JA], ot p(A) = Jnax, [A]-

2. On suppose que ||A|| < 1. Montrer que I,, + A est inversible,
puis que ’ensemble des matrices inversibles est un ouvert de M,, (R).
(Ecole polytechnique)

> Solution.

1. Sur le corps des nombres complexes, le résultat est completement
immédiat. En effet, si A est une valeur propre complexe de A € M,,(C)
et si X € C" est un vecteur propre unitaire associé, on a AX = AX donc
en prenant la norme |[A| = ||AX]| < [JA|IX]|| = |A] et le résultat en
découle.

Pour une matrice A réelle, il y a une petite difficulté supplémentaire,
car il faut majorer le module de toutes ses valeurs propres complexes
et la norme || || n’est définie a priori que sur R™ (et il n’est pas clair
qu’on puisse la prolonger a C" en induisant la méme norme triple de
lopérateur de C™ canoniquement associé & A). On raisonne alors de la
maniere suivante.

Supposons tout d’abord que ||A|| < 1. Comme [|A*|| < |A]* pour
tout k € N, la suite (A¥)g>o converge vers 0 dans M,,(R). Mais elle
converge alors aussi vers 0 dans M, (C). Par conséquent, si X € C"
est un vecteur propre complexe pour A associé a une valeur propre A,
Iégalité A¥X = MFX, valable pour tout k € N, permet de dire que la
suite (A¥X)g>o converge vers 0 dans C" donc que |[A| < 1 (puisque X
n’est pas nul). Cela vaut pour tout A € Sp A donc on a p(A) < 1.

Passons maintenant au cas général. Si r > ||A[|, on a || ;AM <1let

donc p(%A) < 1 i.e. p(A) < r. Cela étant vrai pour tout r > |JA], il

vient p(A) < JA[.

2. Si|JA]| < 1 on avudans la question précédente que lim A* = 0.
k—+o00

Or, pour tout k € N,
L, —AF = (I, - A)(I, + A+ A%+ ...+ AF)

+oo

et la série Z A* est absolument convergente (puisque [JA[|* < [JA[*),
k=0

donc convergente puisque M, (R) est complet. En faisant tendre k vers

—+o0
linfini dans I’égalité ci-dessus, il vient I,, = (I, — A) (Z Ak). Donc
k=0
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—+oo
I, — A est inversible et son inverse est Y. A*. Comme A = || — A,
k=0
“+o0
I+ A est aussi inversible, d’inverse Z(—l)kAk.
k=0

On vient donc de prouver que I,, est un point intérieur & GL,,(R) et
d’exhiber un voisinage de I,, inclus dans le groupe linéaire. La structure
de groupe nous permet de transporter ce résultat. Soit M € GL,(R).
Pour tout H € M, (R), on peut écrire M + H = M(I,, + M~'H). Or,

IM~H|| < [M~Y|H]|| donc si [H| < m, la matrice I, + M—'H

est inversible et par conséquent M + H aussi.

Conclusion. Le groupe linéaire GL,,(R) est un ouvert de M, (R). <

Le dernier point s’obtient plus rapidement en disant que GL,(R) est
limage réciproque de l'ouvert R* par la fonction det : M,(R) — R
qui est continue. La démarche de l’exercice a le mérite de préciser un
voisinage de chaque matrice M inclus dans GL,(R), mais surtout celui
de se généraliser au cas des endomorphismes d’un espace de Banach (en
dimension infinie il n’y a plus de déterminant...). Le lecteur se reportera
a lexercice 8.11 pour le cas encore plus général des algebres de Banach.

1.37. Vers le théoréme de I’application ouverte

Soient E et F des espaces vectoriels normés de dimension finie et
f e L(E,F) tel que

3k >0, Ja€]0,1[, Vy€B'(0,1), Iz €B'(0,k), lly—f(@)l<a,

ou B’(0, k) est la boule fermée de centre 0 de rayon k.
Montrer que f est surjective.

(Ecole normale supérieure)

> Solution.

L’hypothese signifie que, pour tout point y de la boule unité fermée
de F, on a un élément de 'image de la boule fermée de rayon k qui
n’est pas trop loin de y. On va essayer d’obtenir un antécédent de y en
itérant cela pour construire une suite de vecteurs de I'image de plus en
plus proches de y. Fixons y € F, avec |ly|| < 1. Il existe 21 € E tel que
lz1ll < k et |ly — f(z1)]] € «. Appliquons maintenant I'hypotheése au

vecteur y; = —(y — f(x1)) qui est aussi dans la boule unité fermée. On

peut donc trouver xq, avec |za|| < k, tel que ||y1 — f(x2)|| < «, soit
encore ||y — f(x1 + axz)| < a?. On continue en appliquant ’hypotheése
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1
au vecteur ya = — (y— f(z1+azz)). On construit donc ainsi deux suites
e

(@n)n>1 €t (Yn)n>1 telle que ||z, || < k pour tout n et
ly — f(z1 +axe + - +a"la,)|| <am

Comme la suite (xy,),>1 est bornée par k et comme a < 1, la série
> ¥~z est absolument convergente donc convergente (E est de dimen-
sion finie). Notons s sa somme. En passant & la limite dans 'inégalité
ci-dessus, et en utilisant la continuité de f, on a f(s) = y. L’image de f
contient donc la boule unité fermée de F : c’est par conséquent F tout
entier. <

La preuve ci-dessus montre que le résultat reste vrai lorsque E est un
espace de Banach et f est continue. Ce résultat, combiné au théoréme de
Baire permet alors de démontrer le théoréme de [’application ouverte :
st E et F sont deuzx espaces de Banach et si f € L.(E,F) est surjective
alors l'image d’un ouvert par f est un ouvert.

Dans le cadre de U'exercice, c’est-a-dire en dimension finie, on peut
ausst raisonner de la maniére suivante : le sous-espace Im f étant fermé,
pour tout y € F il existe xg € E tel que ||y — f(zo)| = d(y,Im f) (car on
se ramene facilement a un compact). Si cette distance d n’est pas nulle,

1
on applique I'hypothése au vecteur E(y — f(zq)) : il existe x € E tel que

ly— f(xo+dz)|| < ad<d cequi améne a une contradiction. Avec cette
preuve, on n’a pas besoin de linformation sur la norme du vecteur x.

L’exercice suivant concerne justement le théoreme de l’application
ouverte, dans le cas trés simple de la dimension finie.

1.38. Théoréme de ’application ouverte en dimension finie

Soit f € L(R™,RP). Montrer que f est surjective si, et seulement
si, 'image de tout ouvert par f est un ouvert.
(Ecole polytechnique)

> Solution.

e Supposons que I'image par f d’un ouvert de R™ est un ouvert de R?.
C’est en particulier le cas du sous-espace Im f = f(R"™). Celui-ci est donc
nécessairement égal & R? (une boule ouverte, centrée en origine, de RP
contient une base de RP) et f est bien surjective.

e Réciproquement, supposons f surjective et considérons un ouvert
non vide U de R™. Soit yo € f(U) et ¢ € U un antécédent de yo par f.
On note B = (eq,...,e,) la base canonique de R™, que 'on munit de
la norme infinie, et B la boule unité ouverte de R™ pour cette norme.
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Pour r > 0, on a f(B(zo,7)) = f(zo +7B) = yo + rf(B). Il suffit donc
de prouver que f(B) est un voisinage de 0 pour conclure. Comme f est
surjective, f(B) est une famille génératrice de R? et contient donc une
base. Sans perte de généralité supposons que B’ = (f(e1),..., f(ep)) est
une base de RP. La partie f(B) contient alors tous les vecteurs de la
forme Ay f(e1) + - -+ Apf(ep) avec A; € |—1,1[ pour tout 4. Il s’agit
clairement d’un voisinage de 0 dans RP. <

Comme il a été dit plus haut, ce résultat reste vrai pour une applica-
tion linéaire continue et surjective entre deuz espaces de Banach, mais
sa preuve est plus délicate et fait appel au théoréme de Baire.

1.39. Automorphismes unitaires de C(K, R)

Soit K un compact de R™ et A D’algebre des fonctions continues
de K dans R. Montrer qu'un automorphisme unitaire de A est une
isométrie pour la norme uniforme.

(Ecole polytechnique)

> Solution.

Soient ¢ un automorphisme unitaire de A, f € A et g = ||f|lcoc — /-
La fonction g est positive donc ¢(g) = (¥(,/9))? aussi. Comme 1) envoie
la fonction constante égale & 1 sur elle-méme, on a ¥(g) = || f|lcc — ¥ (f).
On en déduit que ¥(f) < ||fllcc- En faisant de méme avec —f on a
()l < (flloe et done [[¢(f)]loc < [ flloc- En appliquant le méme
résultat & 'automorphisme unitaire /=1 avec la fonction 1 (f) & la place
de f on obtient || f]loc < [[¢(f)lloo-

Conclusion. ) est une isométrie pour la norme uniforme. <

1.40. Endomorphismes qui commutent avec la dérivation

Soit E = C%([—m,n],R) muni de la norme de la convergence
uniforme et T un endomorphisme continu de E tel que, si f est de
classe C1, alors Tf aussi et (Tf)’ = Tf’. On désire prouver que T
est une homothétie.

1. Montrer que si f est polynomiale, alors T f aussi.

2. Pour tout n € N on considere ¢, : t — cosnt. A Daide
du développement en série de Fourier de ¢t — t? convenablement
prolongée, montrer que Tc¢,, = A¢,, ou A est indépendante de n.
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3. Conclure en étudiant d’abord le cas des fonctions paires, puis
des fonctions impaires.
(Ecole normale supérieure)

> Solution.

1. Une récurrence immédiate sur n > 1 montre que, si f est de
classe C" sur [—m, 7], alors (Tf)(") = T £ En particulier si f est une
fonction polynéme de degré n, on a (Tf)"+t1) =0, de sorte que Tf est
une fonction polynoéme de degré < n.

2. Soit n € N*. La fonction ¢, est solution de ’équation différentielle
y"” +n?y = 0. En appliquant T sur la relation ¢/ + n?c, = 0, on obtient
(Tep)"+n2Te, = 0. Par conséquent, il existe deux réels o, et 3, tels que
Te, = ancn+ Bnsn, ou s, désigne la fonction z +— sinnz. Par ailleurs, ¢
est la fonction constante égale a 1. D’apres la premiere question, il existe
donc ag € R tel que Tey = apcp. On va prouver que la suite (8,,)n>1 est
nulle et que la suite (a,)n>0 est constante. Pour cela, comme le suggere
I’énoncé, considérons la fonction 2m-périodique f dont la restriction a
[, 7] est t — t2. Il s’agit d’une fonction paire, continue et de classe
C! par morceaux. Elle est donc somme de sa série de Fourier et celle-ci
converge normalement sur R. Les coeflicients de Fourier de f s’obtiennent

facilement : )
2 [T 2
a = — / £2dt = =
7 Jo 3
et pour n > 1, une double intégration par parties donne
2 [T 4 (7 4(-1)"
an = 7/ t?cosntdt = —— [ tsinntdt = ( 2) .
™ Jo nm Jo n

On a donc pour tout t € [—, 7],

71_2 +oo (71)n
=44
3 + = n?

cosnt

et la convergence est uniforme sur [—, 7]. Notons g : t + t2 la restriction
de f a [—m, w]. D’apres la question 1, il existe des constantes A, u, v telles
que T(g)(t) = AMt? + ut + v pour tout t € [—m, w]. Comme I'opérateur T
est continu pour la topologie de la convergence uniforme, son application
sur la décomposition en série de Fourier ci-dessus donne :

2

—+o00
_1)»
Vt € [-m,m], MP4ut+v= ao% +4 Z ( n2) (v, cosnt + B, sinnt)

n=1

et la série converge uniformément sur [—7, w]. Dans cette égalité, on peut
identifier les parties paires et impaires. Il vient, pour tout ¢ € [—m, 7],
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7T2 +oo (_1)71
At? = — 44 n t
+v a03+nzz:1 nQacosn
+o00
—1)"
ut = 42:1(n2) By, sinnt

Comme les séries trigonométriques convergent uniformément, la premiere

donne le développement en série de Fourier de la fonction Af + v. Par
2 2

unicité, on a donc «, = A pour tout n > 1 et 0407L = )\% +v. En
appliquant la seconde égalité en ¢ = 7, on obtient u = 0, puis 8, = 0
pour tout n > 1 (toujours en raison de la convergence uniforme). Pour
conclure, il reste a prouver que v = 0, de fagon a avoir aussi ag = A.
Pour cela, on note que g"” = 2¢y donc T(g"”) = T(2¢9) = 2y, et par
ailleurs, T(g"”) = T(g)"” = 2Aco. On a donc bien ag = A.

3. Soit f € E paire et de classe C!. Notons f le prolongement 27-
périodique de f & R. C’est une fonction continue et de classe C' par
morceaux. Elle est donc somme de sa série de Fourier et la convergence
est normale sur R donc a fortiori sur [—m, 7] :

+oo
=%, 13 au(pen
n=1

Comme dans la question précédent il suffit d’appliquer T pour obtenir
T(f) = Af. Le cas ou f est seulement continue sera traité a la fin.

Soit maintenant f € E une fonction impaire. Notons F une primitive
de f : F est de classe C' et paire, donc justifiable du cas précédent. On
a T(F) = AF donc en dérivant T(f) = T(F') = T(F)' = AF' = \f.

Par linéarité, on a donc T(f) = Af pour toute fonction de classe C!
et, en particulier, pour toute fonction polynéme. D’apres le théoreme de
Weierstrass, le sous-espace des fonctions polynoémes est dense dans E.
Par continuité, on a donc T(f) = Af pour toute fonction f € E. <

Le théoreme de Hahn-Banach est un résultat essentiel en Analyse
Fonctionnelle. Dans l’exercice suivant, il est présenté sous sa forme
algébrique (prolongement d’une forme linéaire) et seulement en dimen-
sion finie. Sa généralisation a la dimension infinie fait appel au théoréme
de Zorn.
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1.41. Théoréme de Hahn-Banach en dimension finie

Soit E un R-espace vectoriel normé de dimension n, F un sous-
espace de E, u une forme linéaire sur F. Montrer qu’il existe une
forme linéaire @ sur E qui prolonge u et qui est de méme norme

)| o i)

que u, c’est-a-dire telle que sup = .
z€F\{0} (B4 z€E\{0} (B4l

(Ecole polytechnique)

> Solution.

e Si le prolongement algébrique d’une forme linéaire est sans diffi-
culté (on prend H un supplémentaire de F et toute forme linéaire v sur
H détermine de maniére unique une forme linéaire @ prolongeant u en
imposant @y = v), la contrainte sur la norme (on doit avoir ||| = [lul|)
rend ’exercice plus délicat. On fait ’hypotheése que F n’est pas nul (dans
ce cas & = 0 convient) et que F n’est pas égal & E (sans quoi le probléme
est trivial).

e A Toral, étude de cas particuliers est une démarche naturelle et
appréciée. Regardons le cas ou E est un espace euclidien. On considere
la forme linéaire @ de E qui coincide avec u sur F et est nulle sur son
orthogonal F+. Dans ces conditions, si € E est de norme inférieure
ou égale & 1, on peut écrire * = xp + 2’ avec 2p € F et 2/ € FL.
On a alors u(x) = u(axr) = u(xr). Avec le théoreme de Pythagore, on

obtient ||z]|? = ||p||* + ||2’]|* et donc ||zr| < |lz|| < 1. On en déduit
la(z)| = |u(zr)| < [u] et donc, ||a] < [luf]. Comme @ coincide avec u
sur F qui n’est pas nul on a ||@f| > ||u| et finalement ||@| = [|u-

e Parler de 'orthogonal de F lorsque la norme n’est pas euclidienne
n’a pas de sens et il faut procéder autrement. On va supposer pour
commencer que F est un hyperplan de E. Prenons e € E en dehors de F.
On a alors E = F @ Re.

Si u = 0, le probléme est fini : 4 = 0 convient. On suppose donc
u # 0 et méme |Ju| = 1, quitte & diviser u par |Juf| > 0. L’application @
cherchée est déterminée par o = u(e). Nous pouvons énoncer ainsi notre
but : trouver o € R tel que pour tout € F et tout t € R,

|u(z) + ta| < ||z + te]|.

Si un tel « existe, la forme linéaire @ qui & z +te € E (x € F et t € R)
associe u(x) + ta est bien définie et a les propriétés voulues.
Pour a € R, notons (H) la condition & satisfaire :

(H) VxeF, VteR, |u(z)+tal < |z + tel|.
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On a
(H) <= VzeF, VteR, —|z+te|]| <ulzr)+ta< ||z +tel
— VzeF, VteR, —|z+te|]| —u(zr) < ta < ||z + te]| — u(x).

Pour ¢ = 0, la condition est vérifiée pour tout « et tout z (car on a bien
—|lz]] —u(x) <0 < ||z|| — u(x), puisque |Ju| = 1). On divise par ¢t # 0 en
distinguant les cas t > 0 et ¢ < 0 (dans le second cas, on change le sens

des inégalités, mais % |z + te|]| = — %x te

). Ainsi (H) équivaut a

1 1 1
fu(gx) <a< Hzxqte fu(z:c)

—u(lx) 2@2—“11‘—1—6 —u(lx)
t t t

En posant y = %m qui décrit F quand z décrit F et ¢ décrit R ou R*,

vz € F, Vi >0, fH%ere

VereF, Vi <O, H%x%—e

on obtient finalement
H) <= WeF, —|lytel—-uly) <a<|y+e|—uly)

Pour qu’un réel a vérifiant la condition (H) existe, il faut et il suffit que
pour tout y € F et tout ¢y’ € F,

—lly +ell = uly) <y’ + ell = u(¥),

la condition est clairement nécessaire et réciproquement, si elle est
vérifiée, il suffit de prendre o = sup(—||y + e|]| — u(y)). Or, pour y et
yeFr

y' dans F on a
—lly +ell —uly) <y +ell —uly) <= uly’ —y) <[y +ell +ly +ell
Cette derniére inégalité est vérifié car, comme |Jul| = 1, on a

u(y' —y) <y —yll =l +e—(+e)l <IIy +ell +[ly+ell

Donc « vérifiant (H) existe et @ définie comme plus haut prolonge u en
une forme linéaire de méme norme.

e Dans le cas général (si F n’est pas un hyperplan), on peut procéder
par récurrence sur dimE — dimF. C’est trivial si E = F et cela vient
d’étre fait pour dimE — dimF = 1. Si dimE — dimF > 2, on prend un
sous-espace F/ de E contenant F de dimension dimF + 1. D’apreés ce que
nous venons de faire, on peut prolonger u & F’ avec une norme identique.
On applique ensuite I’hypothése de récurrence & ce prolongement sur F’
pour trouver la forme % demandée. <



Chapitre 2

Compacité, convexité, connexité

La notion de compacité joue un role essentiel en Analyse. Dans le
programme de Spéciales, celle-ci est définie a l'aide de la propriété de
Bolzano-Weierstrass : une partie K d’un espace normé E est compacte
lorsque toute suite d’éléments de K admet une valeur d’adhérence dans K
(ce qui correspond & la définition que donne Fréchet en 1906). Les pre-
miers exercices du chapitre reposent sur cet aspect séquentiel de la com-
pacité. Viennent ensuite quelques exercices sur la notion de précompacité
qui donment un autre €éclairage : une partie compacte est une partie
compléte approximativement finie, ¢’est-a-dire recouverte pour tout € > 0
par un nombre fini de boules de rayon €. Cette approche permet de mesu-
rer le degré de compacité (voir Uexercice 2.14). Méme s’ils font parfois
manipuler des recouvrements par des boules ouvertes, notons toutefois
que nos exercices ne font jamais appel a la propriété de Borel-Lebesgue
trop éloignée du programme actuel. Le chapitre se poursuit par plusieurs
exercices sur les ensembles convexes, et notamment les convexes com-
pacts, qui associent des considérations géométriques et topologiques. Il
se termine par des exercices sur la connexité par arcs.

Une partie compacte d’un espace normé est nécessairement bornée
et fermée. En dimension finie, la réciproque est vraie, ce qui offre
une caractérisation particuliérement simple des parties compactes. Le
théoréeme de Riesz, qui fait l'objet de [’exercice suivant, montre que la
réciproque n’est vraie qu’en dimension finie. Par conséquent, de mom-
breux théoréemes ont été établis pour décrire les parties compactes des
espaces usuels de I’Analyse Fonctionnelle qui sont tous de dimension
infinie (par exemple le théoreme d’Ascoli que le lecteur trouvera dans
Vexercice 2.34 du tome 2 d’analyse).

2.1. Théoréme de Riesz

Soit (E,N) un espace normé complexe et S = {z € E, N(z) =1}
la sphere unité de E. Montrer que si S est compacte, alors E est de
dimension finie.

(Ecole polytechnique)

65
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> Solution.

On raisonne par ’absurde, en supposant E de dimension infinie et
en construisant une suite (2, ),>0 de S qui ne peut pas avoir de valeur
d’adhérence. Si E est un espace préhilbertien c’est tres facile a faire : il
suffit de prendre une suite (x,,),>0 orthonormée (de telles suites existent,
par exemple grace au procédé d’orthonormalisation de Gram-Schmidt).

En effet, on a alors ||z, — x,|| = v/2 pour n # p quelconques et aucune
sous-suite de (a:n)n>0 ne peut converger (car aucune sous-suite n’est de
Cauchy).

Revenons au cas général, un peu plus compliqué car on ne dispose
pas de produit scalaire. On va construire, par récurrence, une suite de
S telle que ||z, — x| = 1 pour n # p. On pourra alors conclure comme
précédemment. Partons d’un vecteur unitaire xo quelconque. Supposons
que les p premiers termes xo, ..., z,—1 de la suite soient construits. On
cherche z, € S tel que ||z, — x| > 1 pour 0 < k < p — 1. Notons F
le sous-espace de E engendré par zg,...,2,—1. Comme E n’est pas de
dimension finie par hypothese on peut trouver un vecteur a € E \ F.
Comme F est de dimension finie, il existe b € F tel que d(a,F) = ||a—b||.
En effet, 'application x — |ja — x|| est continue et on vérifie facilement

d(a,F) = inf ||z —a| = inf - > d(a,F .
aue d(a.F) = inf [z —al| = inf v —a] pour r > d(a.F) + [a]

Cette borne inférieure est donc atteinte car F N B/(a,r) est une partie

fermée et bornée, donc compacte, de F. En particulier, la distance d(a, F)
a—>b

est strictement positive. Posons alors z, = m C’est un vecteur
a —

unitaire de E. Comme b € F, on a d(a — b, F) = d(a,F) = |la — b]| et

donc d(z,,F) = 1. En particulier ||z, — x| > 1 pour 0 <k <p—1et

ce vecteur convient. La suite ainsi construite par récurrence n’a pas de

valeur d’adhérence et le résultat est prouvé. <

L’exercice suivant n’utilise que la compacité des boules fermées en
dimension finie.

2.2. Quasi-isométrie

Soient E un espace euclidien et f : E — E. On suppose qu’il
existe > 0 tel que

V(z,y) € B [[If(2) — fW)ll -l —ylll <&

Montrer qu’il existe une extraction ¢ : N* — N* telle que, pour

1
tout zr € E, lim — n)x) existe et que 'application qui a x
m ga(n)fw( )z) q pp q
associe cette limite est une isométrie.

(Ecole normale supérieure)
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> Solution.
Soit € E. On a, pour tout n € N*,

f(na)]| < [1f(na) = FO) + [ £0)]| < [Inz]l + 3+ [ £O)]
L fna)| <

1 p . . .
(5 f(na:)) est bornée et E est de dimension finie, donc on peut en

et donc <l + —~ (5 +1£0) <] + 6+ [[£(0)]] La suite

extraire une suite convergente. Il faut montrer maintenant qu’on peut
choisir une extraction indépendante de x.
Soit p la dimension de E, (e1,...,e,) une base orthonormée de E

et pour n > 1, X,, = (%f(nel), ce %f(nep)). La suite (X;,) est une

suite bornée de l'espace vectoriel de dimension finie EP. On peut en
extraire une suite (X)) convergente. On pose, pour z € E et n € N,

gn(z) = ﬁf((p(n)x) Si (gn(x)) converge, on note g(x) sa limite. Par

le choix de ¢, (gn(e;)) converge pour tout ¢ € [1,p]. On a, pour tout
(r,y) € E? et n € N,

1 (p(n)x) = fle(m)y)]l = lle(n) (@ = y)lll <o

et donc

1
llgn (@) = gn (W)l = llz = ylll < @le =yl

On en déduit que (||gn(z) — gn(y)||) converge vers ||z — y||. On obtient

en particulier, si (g, (x)) et ( (y)) convergent, ||g(z) — g(y)|| = ||z — y/|
et donc, pour tout, (4, ) de [1,pI?, Ilg(e:) — g(es)| = lles — e5]l- D'autre
part, comme la suite (g,(0)) = (% f (0)) converge clairement vers
0, la suite (||gn(x)||) converge vers ||z| pour tout « € E. En particulier
llg(e)|l = lleill = 1 pour tout ¢ € [1,p]. La réciproque du théoreme de
Pythagore assure que les g(e;) sont deux & deux orthogonaux et ainsi
(g9(e1),...,g(ep)) est une base orthonormée de E.

Soit z € E, quelconque. Pour tout i € [1, p], la suite (||g,(z)—gn(e:)]])
et donc la suite (||gn(x) — g(e;)||) convergent vers ||z — e;||. On en déduit
que

lim (gn(2),g(e;)) = lim %(Ilgn(%)ll2 +llg(ell* = llgn (@) — g(ed)lI*)

n—+o0o n——+

1
= Sl + sl = 1o = eal) = {2 e,

pour tout %, puis que

p p

Hm gn(z) = lim Y (gn(x),g(ei))gles) =D (z,ei)g(es).

n—-+o0o n—-+o00 4 £
i=1 =1
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La suite (g, (x)) est donc convergente pour tout z € E.

On a alors d’aprés ce qui précede ||g(z) — g(y)|| = ||l — y|| pour tous
z et y de E, donc g est une isométrie. <

Le résultat de U'exercice n’est pas spécifique aux espaces euclidiens.
Il reste vrai dans tout espace wvectoriel normé de dimension finie. La
démonstration est un peu plus compliqguée. On considére une partie de
E dénombrable et dense F = {x, k € N} (une telle partie existe : il
suffit de considérer l’ensemble des vecteurs dont les coordonnées dans
une base donnée sont rationnelles). Par un procédé diagonal (cf. exer-
cices 3.3 et 3.18), on construit une extraction @ telle que, pour tout

k € N, la suite (ﬁf(gp(n)xk)) converge. Il faut démontrer que la

suite <% fle(n)x) | converge pour tout x € E. Pour cela, on montre
@pn
qu’elle est de Cauchy. Soite > 0 ety € F tel que ||z —y|| < €. Pour sim-

1 1
lifier les notations, on pose u, = —— n)x) et v, = — n)y).
plifi p oy T e()2) oy T e()y)
On note que, pour tout n € N, || f(nx) — f(ny)|| < ||[nx —ny||+ 3 et donc
) )
= vl <l =yl + —o < et

o(n) o(n)

On en déduit que, pour (n,p) € N2,

) )
llun — up|| < ||lon —vp|| +26 + — + —-
v e(n)  o(p)
La suite (v,) est de Cauchy et (%) tend vers 0 donc il existe un
entier ng tel que, pour n et p = ng, ||u, — up|| < 3e. La suite (u,) est
de Cauchy, donc elle converge, puisque E est complet (car de dimension

finie). Ainsi la suite (ﬁ fle(n)x) | converge pour tout x € E. Le fait

que g soit une isométrie s’obtient comme dans [’exercice.
L’exercice suivant est classique mais pas facile.

2.3. Dilatations d’un compact

Soit X un compact non vide d’un espace normé E et f: X — X
une dilatation, c’est-a-dire une application vérifiant

V(w,y) € X% f(2) = f)Il = llz —yl.

1. Soit a € X. Montrer que a est valeur d’adhérence de la suite
(Un)n>0 définie par ug = a et up+1 = f(uy,) pour tout n.
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2. Montrer que f est une isométrie.
3. Montrer que f est une bijection de X sur X.
(Ecole normale supérieure)

> Solution.
1. Comme X est compact, on peut extraire de la suite (uy,),>0 une
sous-suite (’U/(p(n))TLZO qui converge. On a alors pour tout n,

|Upnt1)—pmn) — voll < ||f¢(n)(uga(n+1)—ga(n)) - fw(n)(UO)”

= |upns1) = Upm)ll =0

car f?(") est aussi une dilatation de K. On peut trés bien choisir la
fonction d’extraction ¢ de sorte que la suite ¥(n) = p(n + 1) — ¢(n)
soit strictement croissante. On constate alors que a = ug est limite de la
suite extraite (ty(n))n>0-

2. Soient a et b deux points de X. On définit la suite (u,)n>0 comme
dans la question précédente et on considere de méme la suite (vy)n>0
obtenue en itérant f a partir de vg = b. On peut extraire de la suite
(n)n >0 une sous-suite (U, (n))n>0 qui converge. De la suite (vy,(n))
de X on peut extraire la suite (vy,(p,(n)) qui converge. Si I'on pose
© = P10(pa, les suites (uy(n)) et (vy(n)) convergent, et quitte a en extraire
une sous-suite, on peut supposer encore (¢(n + 1) — p(n)) strictement
croissante. Alors uy(,) converge vers a et vy(,) converge vers b. Mais
on a |[uym) — vym)ll = [|f(a) — f(b)|| pour tout n > 1 car f est une
dilatation. En passant & la limite, on obtient ||a —b|| > || f(a) — f(b)|| et
donc ||f(a) — f(b)|| = |la — b||. Cela vaut pour tout couple (a,b) donc f
est une isométrie.

On sait que le produit de deux compacts est un compact, donc X2
est compact. De la suite (u,,v,) de X2, on peut donc extraire une suite
(Up(n)s Vp(n)) convergente. Cette remarque permet de faire I’économie des
deux extractions successives.

3. Du fait que f est une isométrie, il découle directement que f est
injective et continue. D’apres la premiere question, tout élément de X
est adhérent & f(X). Or f(X) est compact, car image d’un compact par
une fonction continue, et par conséquent fermé. Par suite f(X) = X et
f est aussi surjective, donc établit une bijection de X sur X. <

Cette derniére question (montrer qu’une isométrie d’un compact X
est bijective) est souvent proposée directement & loral. Le lecteur en
trouvera une autre version dans l’exercice 2.11.

L’ezxercice suivant se rameéne assez facilement a ’exercice 2.3.
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2.4. Surjection 1-lipschitzienne d’un compact

Soit X un compact non vide d’un espace normé E et f: X — X
une fonction 1-lipschitzienne et surjective. Montrer que f est une
isométrie.

(Ecole normale supérieure)

> Solution.

Soit g : X — X qui a tout y € X associe un antécédent de y par f.
La fonction g est injective et vérifie f o g = Idx. Soient y; et yo deux
points de X, x1 = g(y1) et xo = g(y2) les antécédents choisis. On a

lg(y1) = g(y2)l| = llz1 — z2|| = [ f(21) — fz2)]| = [[y1 — v2ll-

Donc g est une dilatation du compact X. D’apres ’exercice précédent g
est nécessairement une bijection isométrique de X. On a alors f = g~}
et f est aussi une isométrie bijective de X. <

Tout espace compact étant complet, le théoréme du point fixe s’y ap-
plique (cf. page 159). Mais, dans un espace compact, il est possible d’af-
faiblir un peu Uhypothese de contractance du théoreme du point fize.
C’est ce que montre ’exercice suivant.

2.5. Un théoréme de point fixe

Soit E un espace vectoriel normé et K une partie compacte non
vide de E. Soit f : K — K telle que || f(z) — f(y)|| < |z —yl|| pour
tout (x,y) € K2 tel que = # y.

1. Montrer que f admet un unique point fixe a.

2. Soit (zy,)n>0 une suite définie par xg € K et 2,01 = f(zy)
pour tout n. Montrer que (xn)n>0 converge vers .

(Ecole polytechnique)

> Solution.

1. Soit g :  — |l — f(2)| la fonction qui mesure 1’écart entre un
point = et son image par f. Comme g est continue sur le compact K,
puisque f lest, elle atteint son minimum en un point o € K. Supposons
que ce minimum n’est pas nul i.e. que a # f(a). On a alors

9(f(a)) = [[f(a) = F(f(a)]l <[l = f(@)]] = g(),



2.6. SUITE AYANT DEUX VALEURS D’ADHERENCE 71

ce qui contredit la définition de c. On a donc g(a) = 0 et « est un point
fixe de f. Il ne peut clairement pas y avoir deux points fixes distincts,
donc « est 'unique point fixe de f.

2. La suite réelle ||« —x,,|| est décroissante et positive donc converge.
Notons s sa limite et supposons par ’absurde s > 0. Par compacité de K,
on peut extraire une suite (z,(,)) qui converge vers un point 3 € K. On
a alors ||a— 3| = s par passage a la limite. Mais comme ||a— f(z,(n)) || =
o =2 (n)+1]| = s pour tout n, on a aussi |ja— f(5)|| > s, par continuité
de f. On a donc || f(a) — f(B)|| = ||a— B|| avec a # B, ce qui contredit la
propriété vérifiée par f. Ainsi s = 0 et (2,)n>0 converge bien vers a. <

La premiére question de l’exercice suivant est classique et établit
un résultat tres important (voir par exemple les exercices 2.12 et 2.13
du tome 1 d’analyse pour des applications). L’exercice se poursuit par
létude d’une suite récurrente d’un compact qui admet exactement deux
valeurs d’adhérence.

2.6. Suite ayant deux valeurs d’adhérence

Soit K une partie compacte d’un espace vectoriel normé E.

1. Montrer qu'une suite d’éléments de K converge dans K si, et
seulement si, cette suite admet une seule valeur d’adhérence.

2. Soit f: K — K une application continue, g € K. On définit
une suite (zy,)n>0 en posant x,11 = f(z,) pour tout n. On suppose
que cette suite admet exactement deux valeurs d’adhérence zg et 2.
Montrer que pour deux voisinages quelconques Vg et Vi de zg et 21,
il existe N € N, tel que n > N implique x,, € Vo U V1.

3. Soit ¢ une extraction telle que x(,) converge vers z9. Que
peut-on dire de la suite (z,(,)4+1) 7 Envisager deux cas et conclure.

(Ecole polytechnique)

> Solution.

1. Si la suite (x,)nen converge vers z, alors toute sous-suite de
(zn)nen converge aussi vers z et z est la seule valeur d’adhérence de
la suite (z,)nen.

Réciproquement, supposons que (2,)neny € K possede une seule
valeur d’adhérence z et qu’elle ne converge pas vers z. Alors il existe
e > 0, tel que pour tout N € N il existe n > N tel que ||z, — 2| > e.
On peut donc construire une suite (2, (n))nen extraite de (z,)nen telle
que, pour tout n, [|[T,(,) — z|| = €. De celle-ci, K étant compact, on peut
extraire une nouvelle sous-suite convergente (Zyoq(n))nen- Si on appelle
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Z' sa limite, on a ||z — 2’| = ¢, donc z # 2/, et pourtant 2’ est une valeur
d’adhérence de la suite (2, )nen. Clest contraire & ’hypothese.

2. Raisonnons par I'absurde et supposons qu’il existe des voisinages
Vo de zg et Vi de z; tels que, pour tout N € N, il existe n > N tel
que z,, € VoU V7. On peut alors construire une sous-suite (Z,(n))nen de
(7n)nen telle que, pour tout n, on ait x,,) ¢ VoUV1. Lasuite (2y(n))nen
possede une valeur d’adhérence z qui est aussi valeur d’adhérence de
(Zn)nen. On a donc z = zp ou z = z;. Mais c’est contradictoire avec le
fait que pour tout n € N, z,¢,) ¢ Vo U V.

3. Soit (2y(n))nen une suite extraite de (7, )nen qui converge vers zo.
Comme f est continue, la suite de terme général z ()11 = f(Tpn))
converge vers f(z9). Donc f(z9) est une valeur d’adhérence de la suite
(Zn)nen et on a soit f(z9) = zo soit f(zg) = 21.

e Montrons qu’on ne peut pas avoir f(zg) = zp, en raisonnant par
I’absurde. Soit Wy un voisinage de zy et Vi un voisinage de z; tels que
WoNVy = 0. Comme f est continue en zg, il existe un voisinage Vg de
zo tel que f(Vy) C Wy. Si z appartient & Vg, alors f(z) n’appartient
pas a V1. D’apres la question 1, il existe N € N tel que, n > N implique
Zn € VoUV1. Comme zg est une valeur d’adhérence de (z,,)nen, il existe
ny > N tel que z,, appartienne a V. Mais alors x,,, 11 = f(zn,) n’est
pas dans Vq, donc est dans V. Une récurrence immédiate montre que
pour p > n; x, appartient a Vo et pas a Vi, ce qui est contradictoire
avec le fait que z; valeur d’adhérence de la suite (z,)nen. On a donc
f(2z0) = 21 et par symétrie f(z1) = 2o : 20 et z1 sont deux points fixes
de fo f.

e Montrons maintenant que les deux sous-suites (Zon)nen et
(Z2n+1)nen convergent, l'une vers zg, l'autre vers z;. Comme f est
continue sur le compact K elle y est uniformément continue. Soit

e €10, %Hzo - 21||[ et 7 un module d’uniforme continuité de f relatif

a . On peut imposer de plus < e. Soit enfin Vo et Vi les boules
ouvertes de rayon 7 de centres respectifs zg et z;. D’apres la question 2,
il existe N € N tel que, si n > N, alors z,, appartient a Vo U V7.

Si x,, appartient & Vo, alors on a || f(zn) — f(20)|| = |#n+1 — 21| < .
De par le choix de € et 7, on a alors, ||x,+1 — 20| > € > 1 et Tpy1
n’appartient pas a Vy, il est dans V;. On montre de méme que, pour
n > N, si x,, est dans Vy, alors x,,41 appartient a Vy.

A partir du rang N, les termes de la suite sont alternativement dans
Vg et V1. On a donc

* 801t ||xe, — 20|| < € €t ||Tan+1 — 21| < € pour tout n > N,

* 801t ||xe, — 21| < € et ||Tan41 — 20]| < € pour tout n > N.

Cela étant vrai pour tout € > 0 assez petit, nous avons montré que
I'une des sous-suites convergent vers zy et 'autre vers 2.

Conclusion. Si la suite (2, )nen possede deux valeurs d’adhérence zg
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et z1, alors f(z0) = 21, f(21) = 20 et les deux sous-suites (2, )nen €t
(Zan+1)nen convergent, I'une vers zg, Vautre vers z1. <

L’énoncé suivant donne un exemple de compact de L(E), ou E est de
dimension finie.

2.7. Endomorphismes stabilisant un compact

Soit E un espace vectoriel normé de dimension n > 1 et A une
partie compacte de E. On pose Ly = {f € L(E), f(A) C A}.

1. Montrer que si A contient une boule ouverte alors Ly est une
partie compacte de L(E).

2. Caractériser les parties compactes A telles que La soit une
partie compacte de L(E).

(Ecole polytechnique)

> Solution.
1. Comme A contient une boule ouverte, elle contient une base
(e1,...,en) de E. On munit alors £(E) de la norme N définie par

N(f) = ax Il f(ex)|l. La partie A est compacte, donc bornée. Soit
IR

M > 0 tel que ||z|] < M pour tout € A. Alors, pour tout f € Ly,
on a N(f) < M, donc Ly est une partie bornée de £(E). Montrons que
La est aussi fermée, ce qui permettra de conclure, puisque L(E) est de
dimension finie. Soit (fp)p>0 une suite de La qui converge vers f (au sens
d’une norme quelconque sur £(E)). Montrons que f € La. Soit € A.
Pour tout p, le vecteur f,(x) est dans A par hypothese, et la suite f,(z)
converge vers f(x). Comme A est fermée, f(z) € A. Ainsi f stabilise A,
et La est une partie compacte de L(E).

2. Dans ce qui précede, on n’a pas vraiment utilisé le fait que A
est d’intérieur non vide, mais seulement le fait qu’il contient une base
de E. Montrons que cette condition est nécessaire pour que Lj soit
compacte. Si Vect A est un sous-espace strict de E, on se donne une
base (f1,...,fp) de Vect(A), que 'on complete en une base (f1,..., fn)
de E. Les endomorphismes ayant une matrice diagonale de la forme
Diag(1,...,1,dpt1,...,d,) dans cette base sont tous dans L (puisqu'’ils
agissent comme l'identité sur le sous-espace Vect(A)). Cela montre que
I’ensemble Ly n’est pas borné et donc pas compact.

Conclusion. L’ensemble Ly est un compact de L(E) si, et seulement
si, Vect(A) = E. <
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L’ezxercice suivant utilise (et démontre) le théoréme de Dini : si une

suite croissante de fonctions continues sur un compact converge simple-
ment, la convergence est uniforme.

2.8. Suite croissante de fonctions continues

Soit  un ouvert de R™, H un sous-espace vectoriel de C°(Q2, R)
et HT = {u € H, u > 0}. Montrer qu’il y a équivalence entre :

(¢) Pour tout compact K inclus dans 2, et pour tout zy € €2,
il existe ¢ > 0 tel que : Vz € K, Yu € HT, u(z) < cu(zo).

(74) Pour toute suite (u,) croissante de H* qui converge
simplement vers u : 2 — R, on a : soit u est identiquement infinie,
soit u est partout finie et continue.

(Ecole polytechnique)

> Solution.

On suppose que (7) est réalisé et on consideére une suite (u,,) croissante
de HY. Pour tout z € €, la suite (u,(2)) a une limite u(z) appartenant
a R, ce qui définit u : © — R. On suppose qu’il existe zy € € tel que
u(2p) soit fini. Soit K un compact inclus dans Q. Il existe ¢ > 0 tel que,
pour tous z € K et v € H", v(z) < cv(29). On a donc, pour tout z € K
et tout n € N,

un(2) < cun(20) < cu(2o).

Pour tout z € K, la suite (u,(z)) est majorée donc u(z) € Ry. Pour
(n,p) € Net p>n, up, — u, € H" donc, pour tout z € K,

up(2) — un(2) < c(up(20) — un(20))-
En faisant tendre p vers l'infini, on obtient, pour tout z € K,
0 < u(z) —un(2) < e(u(zo) — un(20)).

La suite (u,) converge uniformément sur K. Ceci est vraie pour tout
compact K de . Comme les fonctions wu,, sont continues, leur limite «
est également continue. Donc (i7) est réalisé.

Pour la réciproque, on raisonne par I'absurde : on suppose que (%)
est réalisé, mais que (i) n’est pas vérifié. Ainsi, il existe zg € et un
compact K de 2 tels que, pour tout ¢ > 0, il existe u € Hy et z € K tels

que u(z) > cu(zp). En particulier, pour tout n € N*, il existe z, € K
" 1
et u, € HT tels que u,(2,) > nuy,(z0). On pose v, = Y ———
=) k2ug(20)
Alors (vy,) est une suite de HT, croissante. On a, pour tout n € N*
L |
un(20) = kz_:l =L donc (v, (20)) converge vers une limite finie. D’apres

Uk .
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(7i), la suite de fonctions (v,) converge simplement vers une fonction
v: Q — R, continue. D’autre part, la suite (z,) du compact K admet
une valeur d’adhérence z. Il existe ¢ : N* — N*_ strictement croissante

telle que z = ngrfoo Zo(n)-

On utilise alors le théoréeme de Dini : si une suite croissante de fonc-
tions continues sur un compact d’un espace vectoriel normé converge sim-
plement vers une fonction continue, la convergence est uniforme. Nous
Pavons démontrée pour des fonctions définies sur un segment [a,b] de
R dans notre tome 2 d’analyse (exercice 2.30). La démonstration reste
essentiellement la méme.

Lemme. Soit K un compact d’un espace vectoriel normé et (f,) une suite
croissante de fonctions continues sur K a valeurs réelles convergeant
simplement sur K vers f : K — R. Si f est continue, la convergence
est uniforme.

Démonstration.

Pour tout n € N, la fonction f — f,, est positive et continue sur K.
Il existe donc z, € K tel que M,, = ||f — falloo = f(zn) — fulxn).
Pour tout z € K, on a f(z) — fay1(z) < f(z) — fu(z) < M,, donc
0 < M,41 < M,. La suite réelle (M,,) est décroissante et positive donc
converge vers M > 0. La suite (z,,) étant dans le compact K contient
une sous-suite (z,(,)) qui converge vers a € K. Pour tout n € N et tout
p < ¢(n), ona

0 <M< My = f(@p(n) = fom) (Tom) S F(@pn)) = fo(@p(m))-

De 0 < M < f(2pm)) — fp(Tem)), on tire, en faisant tendre n vers
linfini, 0 < M < f(a) — fp(a), puisque f — f, est continue. Comme
lim f,(a) = f(a), on en déduit M = 0. La suite (||f — fnllco) converge

vers 0, ce qui est la définition de la convergence uniforme.

Comme (v,) est une suite croissante de fonctions continues qui
converge simplement vers la fonction continue v, la croissance est uni-
forme sur le compact K. A fortiori, la suite (v,(n)) converge uni-
formément vers v sur K. Comme (z,,)) est une suite de K qui converge
vers z, la suite (vw(n)(z'(p(n))) converge vers v(z). Mais on a, pour tout
n € N¥,

1

'Un(zn) =

et donc en particulier vy (n)(24(n)) = ©(n) donc (V) (24(n))) tend vers
+00. On obtient la contradiction voulue. <

L’exercice suivant reléve de l’étude des systémes dynamiques. On y
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étudie en effet l'adhérence de l’orbite d’un point sous l’action des itérées
d’une fonction.

2.9. Théoréme de Gottschalk et Hedlung (1955)

Soient (E, || ||) un espace normé, X un compact de E, f : X — X
un homéomorphisme et g : X — R une application continue. On
suppose :

(i) pour tout compact C C X, f(C) cC = C=0ou C=X;

(i) il existe g € X et M € R tels que :

> g0 f (o)

=0

Vn € N, < M.

n

Z go fi(z)

On définit F : (z,t) € X xR — (f(x), (x) +
pour s € R, Ty : (2,t) e X X R — (2,6 +5) € X %
on note K, = {F*(z,0), n € N}.

2. Soient z et y dans X. Etablir Pexistence et Punicité de s € R
tel que Ts(K,) = K.

3. Soit z € X. Montrer que K, est le graphe d’une application
continue de X dans R.

4. Etablir lexistence d’une application ¢ : X — R continue

telle que po f —p =g.

1. Montrer que : Vx € X, Vn € N, 2M.

<
t) € X xR et,
R. Pour z € X,

(Ecole normale supérieure)

> Solution. o
1. Pour tout = € X, notons A, = {f%(z), i € N} et C, = A,. Il est
clair que f(A;) C A,. Comme f est continue on en déduit

f(C) = f(As) C f(As) C Cy.
Or C, est compact, puisque c’est un fermé du compact X, et non vide,
donc C, = X, d’apres (7).
Soient 2o € X, z € A,, et j € N tel que z = f7(xg). On a, pour tout
n €N,

n+j n+j

j—1
= D90 @) =|>_go fi(wo)|+
i—j i=0 —

Soit maintenant x € X et (z1) une suite d’éléments de A, qui converge
vers z. On a, pour tous entiers naturel k et n,

f(x) fi(zo)| <
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<

fi ()

En faisant tendre k vers +oo et en utilisant la continuité de f et g, on
obtient pour tout n € N*,

fi(z)| < 2M.

2. On pose, pour tout x € X, B, = {F"(z,0), n € N}. On a
F(z,0) = (f(x), g(2)), F*(z,0) = (f*(x), g(f(2)) + g(x)) et 'on montre

par une récurrence immédiate que pour tout n € N,

F"(z,0) = ( Zgofl >

On prend d’abord y € A, : il existe k € N tel que y = f*(x). Pour
n+k—1 k—1

n €N, F*(y,0) = (f*+*(x), Z go fi(z)). On pose s = > go fi(x).

i=0
On a, pour tout n € N, T, (F"( ) 0) = F"*k(x,O) et donc T5(B,) C B,.
Ainsi, pour tout y € A,, il existe s € [-2M, 2M] tel que T4(B,) C B,.
Soit y € X. Il existe une suite (y,) d’éléments de A, qui convergent
vers y et pour tout p € N, s, € [-2M,2M] tel que T, (B,,) C B,. La
suite (sp) est bornée donc on peut, quitte & remplacer (s,) et (y,) par
des suites extraites supposer que (s,) converge vers s. Pour tous entiers
naturels n et p,

n—1

Ts, (F"(4p,0)) = (" (vp), Z go fi(yp) + sp) € Bo.
=0

En faisant tendre p vers U'infini, on en déduit que
Zgon +5) € By =K,, ie. To(F"(y,0)) € K,.

Cela montre que Ts(B,) C K. Comme T, est continue, on en déduit
T.(K,) C K.

Il faut démontrer qu’en fait on a une égalité. On montre de méme
qu'il existe s’ € R tel que Ty (K;) C Kyy. On en déduit que

Ts+s’(Kz) =T,0T, (Kz> c K.

Notons p : (x,t) — t la projection de X x R sur R. On a pour tout
n € N, p(F,(z)) € [-2M, 2M], i.e. p(B;) C [-2M,2M]. On en déduit



78 CHAPITRE 2. COMPACITE, CONVEXITE, CONNEXITE

que p(K;) C [-2M,2M]. Or pour tout k € N, Ty4e(Ke) C K,
et p(Trsts)(Ke)) C [-2M,2M]. Or si w € K,, comme la suite des

P(Ths+s)(w)) est bornée, nécessairement s + s = 0, autrement dit,
Torw = Id. Ainsi, on a K, = T, 0 Ty(K,) C Ty(K,) C K, et
T, (K,) =K,.

L’unicité résulte de ce qui précede. Soit ¢ € R tel que Ty(K,) = K,.
On a alors K, = (Ty) " 1(K,;) = T_(K;) et K, = Ty 0T_(K,) =
Ts_+(Ky). On en déduit s—t=0et donc s =¢.

Conclusion. Pour tout (z,y) € X2, il existe un réel s unique tel que
T.(K,) = K,.

3. Notons g : (z,t) — x la projection de X xR sur R. Par définition,
q(K,) contient ¢(B,) = A,. On sait que A, = X. Soit z € X. Il existe
une suite d’éléments (z,,t,) de B, telle ¢(zn,t,) = z, converge vers
x. Comme la suite (¢,) est bornée (|t,| < 2M), on peut en extraire une
sous-suite (f,(,)) qui converge vers t. La suite (T, (n),t,(n)) converge vers
(z,t) qui appartient & B, = K,. Donc z € ¢(K,) et ¢(K,) = X.

Ainsi, pour tout y € K, il existe t € R tel que (y,t) € K,. Pour
que K, soit le graphe d’une application de X dans R, il faut que, pour
tout y € X, ¢ soit unique. On remarque que (y,t) € K, équivaut a
T:(y,0) € K. Il est clair que F(B,) C B,. Comme F est continue, on en
déduit F(K,) C K,. D’autre part, Ty commute avec F. On en déduit que,
si (y,t) = Ti(y,0) € Ky, on a pour tout n € N Ty (F"(y,0)) € K, c’est-
a~dire T;(B,) C K,. Comme T; est continue, on en déduit T;(K,) C K,
et d’apres la question précédente cela implique T;(K,) = K;. Un tel ¢
est unique. Donc K, est le graphe d’une application ¢ de X dans R.

Montrons maintenant la continuité de ¢. Soit y € X et (y,,) une suite
de X qui tend vers y. On pose pour tout n, t, = ¢(y,). Supposons que
(t,) ne tende pas vers ¢(y). Il existe £ > 0 et une extraction v telle que,
pour tout n € N, [ty — ©(y)| = e. Comme (ty(,)) est bornée on peut,
quitte a la remplacer par une nouvelle suite extraite, supposer qu’elle
converge vers t. On a alors |t — ¢(y)| > €, donc t # ¢(y) et (y,t) ¢ K.
Mais K, est fermé et pour tout n € N, (yy(n), ty(n)) € Kz donc sa limite
(y,t) devrait appartenir & K,. D’olt une contradiction et la continuité
de ¢.

4. On prend un élément x quelconque et on garde les notations de
la question précédente. On a montré que pour tout y € K, ¢(y) =t
équivaut a Ty (B,) C K. Il résulte du début de la question 2 que, pour

tout k € N, o(f*(x Zgon ) et donc

o f(f¥(2)) = o(f*(2)) = o(f*(x)) — o(f*(2)) = g(f*(2)).

Ainsi les applications go f —¢ et g coincident sur A, donc par continuité
sur X =A,. Onadonc po f—p=g.<
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On peut mnoter qu’il est inutile de supposer que f est un
homéomorphisme. La continuité suffit. D’autre part, [’existence de
@ implique, pour tous x € X et n € N,

n n

Y gofi@) =) (pofTHz)—pofi(x) =p(f"(2) — px).

=0 =0

Comme les fonctions continues ¢ et @ o f sont bornées sur le compact
X, la condition (i1) est réalisée. Pour un couple (X, f) vérifiant (i) (on
dit que f est un homéomorphisme minimal), il y a équivalence entre (i)
et existence de .

L’énoncé suivant domme un critére trés utile de compacité faisant
intervenir la notion de précompacité. Celle-ci sera au ceur des exercices
sutvants.

2.10. Compacité et précompacité

Soit E un espace vectoriel normé, A un sous-ensemble non vide
de E.
1. Montrer qu’il y a équivalence entre :

n
(1) Ye > 0, In € N*, 3(ai)1gicn € A", A C U B(a;,€);
i=1
(1) de toute suite d’éléments de A, on peut extraire une suite
de Cauchy.
2. Un ensemble A de E vérifiant () est dit précompact. Montrer
que A est compact si, et seulement si, A est précompact et complet.
(Ecole polytechnique)

> Solution.

1. e Montrons que (¢) implique (ii). Soit (xy)n>0 une suite de A.
En prenant ¢ = 1, on obtient que {z,,n € N} est inclus dans la réunion
d’un nombre fini de boules de rayon 1, dont le centre est dans A. Une
de ces boules au moins contient un nombre infini de termes de la suite :
on peut donc trouver a; € A et I; C N infini, tel que

{CL’k, ke 11} C B(al, 1)

Supposons construits des sous-ensembles infinis de N, Iy,...,I, et
(a1,...,a,) € A™ tels que

ILLo---DI,
Vi e [1,n], {zx, k€ L;} C B(ai7 %)
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Alors {zg, k € 1,,} est contenu dans une réunion finie de boules de rayon

1 . .
T dont le centre est dans A. Une de ces boules au moins contient

un nombre infini d’éléments de cet ensemble : il existe donc a, 41 € A et
un sous-ensemble infini I,,1; de I, tels que

1
{fEk7 ke In+1} C B(an+1, m)

Les suites (I,)n>1 et (an)n>1 étant ainsi construites, on définit une
application ¢ strictement croissante de N* dans N* telle que, pour tout
n € N* on ait ¢(n) € I,. On prend ¢(1) quelconque dans A;. Puis
©(1),...,p(n) étant construits, on prend ¢(n+ 1) quelconque dans I, 11
et strictement supérieur & p(n), ce qui est possible car 1,47 est infini.

Par construction, pour 1 < m < n, Ty(m) et Ty, sont tous deux

2

1
dans la boule B <am, a) car I,, C I, et on a donc [Ty (n) =Ty (m) || < P

Cela démontre que la suite (z,x))r>1 extraite de (z,),>0 est une suite
de Cauchy. On a donc prouvé (7).

e La réciproque est plus facile. On montre la contraposée. On suppose
donc qu’il existe € > 0 tel que, pour tous n € N* et (a;)1<ign € A", il

n
existe x € E qui appartient a A\ U B(ai, ). On construit alors une
i=1
suite (2, )nen+ d’éléments de A telle que, pour tout (m,n) € N2, on ait
|€m — xn|| = €. On choisit 1 quelconque dans A. Puis on construit
les termes de la suite (z,),>1 par récurrence : 1,..., %, étant choisis

et vérifiant pour (p,q) € [1,n]%, ||z, — 4| > ¢, on prend z,,, dans
n

AN\ U B(xz;, ), ensemble qui n’est pas vide par hypothese. On a alors,
i=1

im
pour tout ¢ € [1,n], ||€nt1 — x| = €. La suite (z,,)n>1 ainsi construite
a les propriétés voulues et aucune suite extraite de (z),>1 ne peut
étre de Cauchy. En effet, pour toute application strictement croissante
@ :N— N, on a |[zym) = Tym)l| =€ des que m # n.

2. Si A est précompact, de toute suite de A, on peut extraire une
sous-suite de Cauchy. Si de plus, A est complet, cette sous-suite converge
vers un point de A. On peut donc extraire de toute suite de A une sous-
suite qui converge vers un point de A et par conséquent, A est compact.

Réciproquement, si A est compact, A est complet (c’est du cours).
De plus, de toute suite de A on peut extraire une sous-suite convergente,
qui est en particulier une suite de Cauchy. D’apres la premiere question,
A est précompact et ’équivalence est prouvée. <

La notion de précompacité (recouvrement par un nombre fini de
boules ouvertes de rayon £ pour tout € > 0) peut aussi se définir a laide
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de la notion de partie e-séparée (ensemble de points dont les distances
mutuelles sont toutes > e). C’est ce que on voit dans la premiére ques-
tion de ’exercice suivant qui offre une nouvelle solution de la derniéere
question de l’exercice 2.5.

2.11. Isométries d’un compact

Soient || || une norme sur R, K un compact non vide de R™ et ¢
un réel strictement positif. Une partie A une partie de K est dite
e-séparée si : V(z,y) € A2, |ly —z|| <e =z =y.

1. Soit € > 0. Montrer qu’il existe un entier M(¢) tel que toute
partie e-séparée de K soit de cardinal inférieur a M(e) et tel qu'il
existe une partie e-séparée de cardinal M(e).

2. Soit f : K — K une fonction qui conserve la distance. Montrer
que f est surjective.

(Ecole normale supérieure)

> Solution.

1. La question consiste simplement & montrer que I’ensemble U des
cardinaux des parties e-séparées de K est une partie majorée de N. Il
suffira alors de prendre pour M(e) le plus grand élément de U. C’est une
simple utilisation de la précompacité de K (voir exercice 2.10) : il existe
p € N* et ay,...,a, dans K tels que les boules ouvertes centrées en les
a; et de rayon = recouvrent K. Toute partie e-séparée possede alors au
plus p éléments : en effet, si on a plus de p + 1 éléments dans K il y en
a au moins deux, disons x et y, qui sont dans la méme boule ouverte de
rayon % ce qui impose N(y — z) < e.

Si on note N(g) le nombre minimal de boules ouvertes de rayon €
nécessaires pour recouvrir K on a donc M(g) < N (%) 1l est par ailleurs
clair que N(e) < M(e), car les boules de centre € centrées en les points
d’une partie e-séparée recouvrent nécessairement K (sinon on pourrait
ajouter un point de plus). On en déduit qu’une partie d’un espace normé
est précompacte si, et seulement st, pour tout € > 0, les parties e-séparées
de cet ensemble sont toutes finies.

2. Supposons par I’absurde que f n’est pas surjective et considérons
un élément y de K qui n’est pas dans f(K). Comme f(K) est compact
(en tant qu’image continue d’un compact) la distance d de y a f(K) est
strictement positive. Prenons € < d et A une partie e-séparée de K de
cardinal maximal M(g). Comme f conserve la distance, f(A) reste une
partie e-séparée de f(K), de cardinal M(e) puisque f est injective. On
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obtient une contradiction, car f(A) U {y} est une partie e-séparée de K
qui possede M(e) + 1 éléments. <

Dans l’énoncé suivant, on cherche un recouvrement fini d’un com-
pact K par des boules (fermées) de rayon € qui minimise la somme des
distances entre les centres des boules.

2.12. Recouvrement minimal

Soit K un compact de R? et ||| une norme sur R2. Soit € > 0.
Si A est une partie finie de K, on dit que A e-recouvre K lorsque
K c ] B(a,e).
a€A
1. Montrer qu’il existe un entier N(¢) tel que toute partie A qui

e-recouvre K soit de cardinal supérieur ou égal & N(e) et tel qu'il
existe une partie A de cardinal N(e) qui e-recouvre K.
2. On note A l'ensemble des parties de cardinal N(g) qui e-
recouvrent K. Montrer que la fonctionD: A€ A— > |ly—z|
(z,y)€A2
atteint son minimum.

(Ecole normale supérieure)

> Solution.
1. La précompacité de K (voir exercice 2.10) montre qu’il existe des

parties finies A de K telles que K C U B(a, €). L’ensemble des cardinaux

a€A
de ces parties est donc une partie non vide de N, qui admet un plus petit

élément N(e).

2. La fonction D est positive donc admet une borne inférieure m.
On va montrer que cette borne est atteinte. Il existe une suite (Ay)n>0
de parties de A telle que la suite (D(A,)) tende vers m. Notons
(@n,1,-. ., N()) les éléments de A, pris dans un ordre quelconque.
Comme K est compact on peut, par N(e) extractions successives, trou-
ver ¢ : N — N strictement croissante telle que toutes les suites (aq,(n),k)
convergent. On notera by la limite de (ay(n),x) Pour tout & € [1,N(e)].

Montrons que la partie B = {b1,...,bx(.)} est encore dans A. Pour

cela il suffit de prouver que K C U B(b,¢) car, par minimalité de N(e),

beB
les éléments de B seront alors forcément deux & deux distincts. Soit x

un point quelconque de K. Pour tout entier n, on peut trouver un entier
k(n) tel que ||z — @y, pw(nyl| < e car A, € A. La suite d’entiers (k(p(n)))
prend ses valeurs dans I’ensemble fini [1,N(g)], donc on peut en extraire
une sous-suite constante (k(¢(¥(n)))). On notera ¢ la valeur de cette
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constante pour alléger I’écriture. On a donc

Vn € N, Hx*aga(w(n)),f | < e

Il suffit de faire tendre n vers l'infini pour obtenir ||z — by|| < e. Ainsi
x € B(by,e) et cela prouve que la partie B est dans A.

Il est clair, par continuité de la norme, que la suite (D(A,,)))
converge vers D(B). Comme elle converge aussi vers m, on a par uni-

cité de la limite D(B) = m, et B réalise le minimum de D. <

Dans Dexercice suivant, on montre notamment que l’adhérence et
lenveloppe convexe d’une partie précompacte sont aussi précompacts.

2.13. Enveloppe convexe fermée et précompacité

Soit (E, || ||) un espace normé réel. Si A est une partie bornée
non vide de E, on note Ca 'enveloppe convexe de A et a(A) la
borne inférieure de ’ensemble E des réels € > 0 tels que ’on puisse
recouvrir A par un nombre fini de boules ouvertes de rayon e.

1. Calculer a(A) si E est de dimension finie.

2. Montrer que a(Cp) = a(A).

(Ecole normale supérieure)

> Solution.

1. Tlest clair que Ea est un intervalle (sir € Ea, alors [r, +oo[C Ea),
non vide car A est bornée. Notons que dans cet exercice on n’impose
pas aux centres des boules d’étre des points de A. Néanmoins dire que
a(A) = 0 équivaut & dire que E est précompact. En effet, pour tout
€ > 0, si on peut recouvrir A par un nombre fini de boules ouvertes de
rayon €, alors on peut le recouvrir par un nombre fini de boules ouvertes
de rayon 2¢ centrées en des points de A : il suffit de choisir un point de
A dans chacune des boules précédentes (en otant celles qui ne coupent
pas A).

Lorsque E est de dimension finie, A est compact car fermé et borné,
donc a(A) = 0. Par suite a(A) = 0, car il est clair que si A C B alors
a(A) < a(B) (on a trivialement Eg C E4).

2. On va décomposer la question en deux résultats en montrant que
pour toute partie bornée A on a a(A) = a(A) et a(Ca) = a(A).

e On a déja vu ci-dessus que a(A) < a(A). Soit 7 € Ex et x1,..., 7,

P
tels que A C U B(x;,7). On a alors pour tout £ > 0,
i=1
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P P
Ac U B(zi,r) C U B(z;,r+¢)
i=1 i=1

donc r + ¢ € Ex. Ainsi a(A) < r + . Cela vaut pour tout € > 0 et tout
r € Ea, donc en passant aux bornes inférieures on obtient a(A) < a(A).
Cela montre ’égalité.

On en déduit en particulier que A est précompacte si, et seulement
si, A est précompacte.

e Montrons maintenant que a(Ca) = «(A). 1l est clair que Cyp

aussi est bornée. On a déja a(A) < a(Cyp) puisque A C Cup. Comme
P

précédemment, prenons r € Ea et z1,..., 2, tels que A C U B(x;, 7).
i=1
L’enveloppe convexe Cyg, .. .,} des points z; est compacte : il s’agit en
effet de 'image du compact A, = {(t1,...,tp,) € RE t1 +---+ 1, =1}
par l'application continue (t1,...,t,) = tiz1 + -+ + tpz,. Pour tout
e > 0, on peut trouver un nombre fini de points ¥, ...,yx de E tels que

N
C{zl,“.,xp} - U B(y]7€)

Jj=1

Prenons un point z € Cp. Celui-ci s’écrit comme barycentre a coefficients
positifs d’'une famille a1, ..., a, de points de A : z = t1a1+- - - +tnpa, avec
(t1,...,tn) € A,. Chaque point a; se trouve dans (au moins) une des
boules de rayon r qui recouvrent A : notons k() I'indice d’une telle boule
et posons y = t1ZTx(1) + -+ + tnTy(n)- Il s’agit d'un point de Cy,, .
tel que

STp}

n n
lz =yl <3 tillai — apy | <3 tar =
i=1 i=1

On peut alors trouver j € [1,N] tel que y € B(y;, ), ¢’est-a-dire vérifiant
lly — y;]| < e. Par inégalité triangulaire, on a ||z — y;|| < r 4+ &. On vient
donc de montrer que

N
Ca C U B(y;,r +¢).

Jj=1

Ainsi, on a a(Cy) < 7 + ¢ et comme précédemment, on en déduit
a(Cyp) < a(A), puis 'égalité de ces deux quantités.

En particulier A est précompacte si, et seulement si, Cp est
précompacte.

En combinant les deux résultats on a a(Ca) = a(Ca) = a(A). <

En dimension finie, l’enveloppe conveze d’une partie compacte reste
compacte (voir Uexercice 4.44 du tome 3 d’algébre) mais en dimension
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infinie, il se peut que cette enveloppe convexe ne soit pas fermée. Cela
explique que 'on considére 'adhérence de l’enveloppe convexe (qui est
fermée et reste convezxe). Dans un espace de Banach, le résultat de 'exer-
cice combiné a la caractérisation des compacts donnée dans l’exercice
2.10 montre donc directement que, si A est une partie compacte, alors
Ca est compact.

St K est un compact non vide d’un espace normé E on peut, pour
tout € > 0, recovvrir K a l'aide d’un nombre fini de boules ouvertes de
rayon € centrées en des points de K. Notons, comme dans les exercices
précédents, N(g) le nombre minimal de boules dans un tel recouvrement.
On définit ainsi une fonction décroissante de €. Lorsque K est infini,
N(e) tend vers +oo lorsque € tend vers 07. Cette fonction permet de
mesurer le degré de compacité de K : plus vite elle tend vers linfini,
moins K est compact. Pour quantifier, on regarde la limite en 0 du quo-

. In N(E) A L. L. S 3 i
tient 1 (ou plutét la limite supérieure car cetle limite n’existe pas
In —

€
toujours). Cette limite est appelée la dimension métrique de K. Les deux
exercices suivants concernent cette notion.

2.14. Mesure de compacité, deux exemples

Si K est un compact d’un espace normé réel E, on note N(K, ¢)
le plus petit nombre de boules ouvertes de rayon e centrées en un
point de K nécessaires pour recouvrir K.

1. On prend E = R™ muni de la norme euclidienne et K la boule

unité fermée de E. Calculer lim w

L - Méme question pour un
e—0

In -
compact K de E d’intérieur non vide.
2. On prend E = C°([0,1],R) muni de la norme de la conver-
gence uniforme et K ’ensemble des fonctions f € E nulles en 0 et
1-lipschitziennes. Calculer la limite quand € tend vers 07 de
In(InN(K, ¢))

hrl1
€

(Ecole normale supérieure)

> Solution.
1. Notons B la boule unité fermée de E et N(e) au lieu de
N(B,e) pour simplifier. Soit w1,...,2Nn() des points de B tels
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N(e)
que B C | B(i,¢). On en déduit une majoration du volume de B :
i=1
N(e) N(e)
vol(B) < ) vol(B(z;,€)) = Y _ €" vol(B) = N(g)e" vol(B),
i=1 i=1

la fonction volume étant homogene de degré n. Comme le volume de B
n’est pas nul, on a déja la minoration N(g) > —-
€
On va maintenant chercher une majoration de N(g), toujours a ’aide

d’un argument de volume. Soit y1, . .., y, des points de la boule B tels que
lly: —y;ll = € pour i # j, avec p maximal. Les boules ouvertes centrées en

5 . PR
les y; et de rayon — sont deux a deux disjointes et la réunion de ces boules

€
est incluse dans B(O, 1+ 5) On obtient, en considérant les volumes et

n £ n
en utilisant de nouveau ’homogénéité du volume, p(%) < (1 + 5) .

Mais on a N(g) < p, car si les boules ouvertes centrées en les y; et de
rayon € ne recouvraient pas B, on pourrait ajouter un point y,,1 de
plus et cela contredirait la maximalité de p. On a finalement obtenu
I’encadrement

6+2)"
. .

Ein <N(e) < <
N(e)

In
Il en découle directement que 1 tend vers n lorsque ¢ tend vers 0.
In =

On peut donc dire que plus la di'mension n est grande, moins la boule
unité est compacte. Dans un espace de dimension infinie, la boule unité
n'est d’ailleurs plus compacte (c’est le théoréme de Riesz que le lecteur
trouvera dans l'exercice 2.1).

Si K est une boule fermée de rayon r > 0, alors pour tout € > 0,
InN(K, ¢)

1

In =
€

on a clairement N(K, ¢) = N(B, £), et on en déduit que tend
T
toujours vers n lorsque ¢ tend vers 0.
Si K est un compact d’intérieur non vide on peut trouver deux boules
fermées B; et By de rayons strictement positifs telles que B; C K C Bo.
Observons que si K; et Ky sont deux compacts avec Ky C Ky on a

N(K1,2¢e) < N(Koq,¢) pour tout € > 0. En effet, soit z1,...,zx sont des
N

points de Ko tels que Ky C U B(x;,¢€). Si la boule B(z;,¢) rencontre
i=1

K; on choisit y; € Ky N B(xz;,¢) et sinon on ne tient pas compte de

cette boule. Il est clair que les boules centrées en les y; et de rayon 2¢

recouvrent K; et il y en a moins de N.
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On a donc lencadrement N(Bj,2¢) < N(K,¢) < N(BQ,%) et en

nN(K, e .
divisant par In é on en déduit directement que % tend toujours

In -
vers n lorsque ¢ tend vers 0.

Lorsque K est d’intérieur vide on ne peut rien dire de général. Il
existe par exemple des compacts de R (comme ’ensemble de Cantor)
ayant une dimension métrigue dans |0, 1[. Il se peut aussi que la limite
considérée dans ’exercice n’existe pas; on la remplace alors par la limite
supérieure. Cela étant, ce qui précéde montre que la dimension métrique
d’un compact K de R™ reste toujours inférieure ou égale a la dimension
du sous-espace affine engendré par K.

2. Notons que la compacité de K découle du théoréme d’Ascoli (voir
exercice 2.31 du tome 2 d’analyse) car K est fermé, borné et équicontinu.
Mais on peut aussi la déduire de l'exercice 2.10. En effet, K est com-
plet car fermé dans I’espace complet E et nous allons justifier qu’il est
précompact en montrant que N(K, E) existe pour tout € > 0.

Soitae]O,l[,NeN*telque%<£et0:xo<m1<~--<xN:1

la subdivision réguliere de [0,1] de pas % On définit un ensemble de

3N fonctions continues sur [0, 1], affines de pente —1, 0 ou 1 sur chaque
intervalle [z;, z;11]. On peut noter f;, ;, .. i\ une telle fonction, ot ip = 0
et, pour 0 < k < N—1, i1 —ix € {—1,0,1}, la valeur de cette fonction

syt

i
en xj étant Nk Par exemple pour N = 4 voici le graphe de f51,1,0,0 :
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Il y a autant de telle fonctions que de listes (ig, i1, ..,ix), soit 3N (car
ip = 0 est fixé). Une telle fonction est nulle en 0, continue et C! par mor-
ceaux de dérivée comprise entre —1 et 1 : elle est donc 1-lipschitzienne
et appartient a K.

Montrons que les boules ouvertes de centre f, ;,,...s €t de rayon 3¢
recouvrent K. Soit f € K. On a |f(zx)| = |f(zr) — f(0)] < |zx| et donc
INf(z)| < k pour tout k € [0,n]. Posons iy, = E (Nf(zg)). On a donc
ir € [—k,k]. D’autre part, pour 0 < Ak < N—1,0n a

1

f(@h1) = f@i)] < Joen —2a] < &

Comme Zﬁk < flzgp) < zk;{l,on a Zkl\?l < flager) < 2
que ig41 € {ix — 1,4k, i + 1}. Cela permet de définir g = f;) 4,.....in- On

si bien

1
a, pour tout k € [0,N], |f(zx) — g(zx)| < N On en déduit, pour tout

T € [Th, Tpqa),

|f(z) —g(z)| < |f(z) — g()]
< |f(@) = flan)] + | f(or) — g(on)| + |g(@r) — g()]
3
< =
AN N7

car f et g sont 1-lipschitziennes. On a donc ||f — gllec < % < 3e.

Donc pour tout € > 0, on peut recouvrir K, par un nombre fini de
boules de rayon . On a montré l'inégalité N(K,3s) < 3N et donc
In(InN(K, 3¢)) < InN + In(In 3). On peut prendre pour N le plus petit

. 1 N . 1 .
entier tel que N < easavoir N=E (g + 1. On a alors un majorant

de In(InN(K, 3¢) équivalent & é lorsque € — 0%. On obtient ainsi un
majorant de In(ln N(K, ¢)) équivalent & In g et donc a In é
Il faut maintenant trouver un minorant équivalent. Reprenons notre

réseau de fonctions f; i,,... iy avec N = E (é) +1. Elles sont deux & deux

. . . 1 . .
distinctes et distantes d’au moins N Par conséquent, pour recouvrir K

1 . . .
de boules de rayon N il faut au moins 3N boules puisque chaque boule
ne peut contenir qu’au plus une fonction du réseau. Autrement dit, on a

g 1 1
N(K,Z)>N(K, — ) >3V >380),
CHERCEIESES

Ainsi, on a la minoration

1
InN(K,e) > E (%) In3 et
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1 1 1
InlnN(K,e) > InE (—) +Inln3 ~1In (—) ~In-—.
3e 3e €

In(InN(K, ¢))
m

£

On conclut par théoreme de comparaison =1«

e—0t In

2.15. Graphe d’une fonction hioldérienne

Pour toute partie bornée A du plan R? euclidien, on note N(A, ¢)
le plus petit nombre de boules ouvertes de rayon £ > 0 nécessaires
pour recouvrir A.

1. Trouver la meilleure constante v telle que si A est une boule
unité, il existe & > 0 tel que, pour tout € € ]0,1[, N(A,¢) > ke7.

2. Soit § € ]0,1]. Démontrer qu’il existe k > 0 telle que pour
tout f : [0,1] — R? fonction S-holdérienne d’image I' et pour tout
£€]0,1[, N(I',e) < ke~ /5,

3. En déduire quesi g > % I'image d’une fonction S-holdérienne
f:10,1] — R? est d’intérieur vide.

(Ecole normale supérieure)

> Solution.
1. D’apres la premiére question de I’exercice 2.14 (dans le cas n = 2),
on a pour tout € > 0,

5+2)2

1
47<N@£%£<
9

22
Ainsi N(A,¢) > 72 et v = —2 convient. Si v < —2, alors de I'inégalité
N(A,e)e™7 < e 77 2(2+2)? on déduit lim N(A,e)e™ = 0 et N(A,e)e™”

e—
n’est pas minoré par une constante strictement positive. Ainsi 7 ne
convient pas : —2 est la plus petite constante v possible, c’est-a-dire
la meilleure (car 'application v — &7 décroit).
2. Tl existe ¢ > 0 tel que, pour tout (x,y) € [0, 1],

1 (@) = F)Il < elz = yl°.

Soit N un entier naturel non nul et xg < 1 < --- < xn la subdivision
de [0, 1] réguliere de pas % Pour tout x € [0,1], il existe k € [1,N] tel
&
N8
a donc || f(z) — f(zg)]| <esiN > (g)ﬁ SiN=E <(§>3) +1, chaque

élément f(x) appartient & une boule de centre f(zy) et de rayon . On

que |z — x| < % et done || f(z) — f(zp)] < - Pour € > 0 donné, on
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1
a donc N(T',e) < N. Comme N ~ <E)B, eFN est majorée pour
e—0t 13

e €0, 1] par une constante k > 0 et N(I', ) < ke P
3. Supposons que 'intérieur de I" n’est pas vide. Il existe donc une

boule B de rayon r > 0 telle que B C I'. Si B est de rayon r alors lB
T
est une boule unité et par homogénéité,

1 —2
N (B,¢) = N<7B, 5) > (f) > 1272,
T T T

d’apres la question 1. Par ailleurs il existe un réel k£ > 0 tel que
N(B,e) < N(T,e) < ke 7.

1_9 k

On a donc, pour tout ¢ € ]0,1[, 7%e72 < ka_%, i.e. €877 < —. Cela

r2
N 1 1 .

entraine — — 2 > 0 et donc 8 < 5+ sinon le membre de gauche de

I'inégalité tend vers +oo quand ¢ tend vers 0. La contraposée donne le

. . 1 o .
résultat : si 8 > 3 alors I' est d’intérieur vide. <

Dans un article de 1890, le mathématicien italien Giuseppe Peano
décrit une courbe de R? dont l’image est le carré [0,1]>. Un an
plus tard, Hilbert proposait une construction plus simple et donnait
une premiere illustration. L’exercice suivant reprend en substance leur

. . 1., . .
construction. Comme la fonction obtenue est = -holdérienne, elle fournit
p s . Py 1
un contre-exemple au résultat de l’exercice précédent pour [ = 3 La
démonstration utilise le théoréme du point fize (cf. page 159).

2.16. Courbe de Peano-Hilbert

Soit E l'ensemble des applications continues f : [0,1] — R?
telles que f(0) = (0,0) et f(1) = (1,0). On considere les applications
Ay, Ay, Ag, Ay R? — R? définies par

T z y+1
Al(xvy) = (g»§>7 AZ(xay): (gvyT)a

r+1 y+1 1—x
A3(‘ray) = ( 9 7yT>7 A4(:C,y) = <17 g7 2 >

Pour t € [0,1] et f € E, on pose Tf(t) = A;(f(4t — i+ 1)), ou
i€ [1,4] est tel que 0 <4t —i+1< 1.
1. Montrer que pour tout f € E, Tf € E.
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2. Montrer que pour tout f € E, la suite (T"f) converge pour
la norme infinie vers un élément ® de E indépendant de f.

3. Montrer que ®([0,1]) = [0, 1]2.

4. Soit ||| la norme de R? définie par ||(z,y)|| = max (|z|, |y])-
Prouver que

Y(t,t') € [0,1)%, [|®(t) — ()| < 24/|t — ']

(Ecole normale supérieure)

> Solution.
1. Sit € [0,1], lentier i est tel que 4t < ¢ < 4t + 1. On trouve un
unique entier de [1,4], sauf si t = i, % ou 3. L’étude de la continuité

de Tf montrera que les deux expressions possibles de T f donnent la
méme valeur. Comme f et les A; sont continues, il suffit de vérifier la

contimuité de Tf en 7, L et . Ona
(3) =m0 =m0 = (0.3).
17 (5) = Aa70M) = 20,0 = (0.3).
14(5) =) =210 = (5.5
14 (57) = AslF07) = 45(0.0) = (5.3)
(5) = A1) = As(1.0) = (1.3).
Tf(%*) = A4(£(0%)) = A4(0,0) = (1, %) .

Ainsi Tf est continue sur [0, 1]. On a de plus
Tf(0) = A1(f(0)) = A1(0,0) = (0,0) et

TF(1) = As(f(1)) = A4(1,0) = (1,0)

donc Tf € E.

Pour la suite il est utile de visualiser I'action des applications affines
A; sur le carré [0, 1]2. Sur la figure suivante on a & gauche le graphe d’une
fonction f € E affine par morceaux et & droite la fonction Ty.
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L’application A; est I'homothétie vectorielle de rapport % composée
avec la symétrie orthogonale par rapport a la droite y = x et conduit
a la partie inférieure gauche de la courbe Ty, Ay est 'homothétie de
rapport % composée avec la translation de vecteur (0,1/2) et conduit
au coin supérieure gauche, Ag est la méme homothétie composée avec la
translation de vecteur (1/2,1/2) et enfin Ay est la symétrie par rapport
a la droite d’équation y + x = 1 suivie de I'homothétie de centre (1,0)
et de rapport %

2. On résout cette question en utilisant le théoreme du point fixe.
On munit R? de la norme || || définie par ||(z,y)|| = max(|z|, |y|) pour
(z,y) € R? et C = C([0,1],R?) de la norme de la convergence uniforme
associée : ||fllec = sup ||f(¢)]]. On sait que C est complet et comme E

te(0,1]

est fermé dans C, il en est de méme de E. Les fonctions A; sont toutes
%—lipschitziennes pour la norme ||| de R2. 1l en est de méme pour T.
En effet, pour (f,g) € E?,t € [0,1] et i tel que 0 <4t —i+1<1,0ona

ITf(t) = Tg@)ll = [[A:i(f (4 —i+ 1)) — Ai(g(4t — i+ 1))

1 ) . 1
< SIfUt—i 1) = gdt — i+ DI < 517 — glle

On en déduit que [|[Tf — Tglleo < %Hf — g|lco- L’application T étant
contractante et E complet, il résulte du théoréme du point fixe que T
posséde un unique point fixe ® € E et que la suite (T" f),,>0 converge
vers ® quel que soit le choix de f.

On peut éviter le recours au théoréme du point fixe (qui n’est pas au
programme des classes préparatoires) en constatant que

[T f = T"flloo < ST =T oo <--- < i I Tf = Flloe-

La série _(T"t1f — T, f) est normalement convergente & valeurs dans
un espace complet : elle converge donc uniformément vers une fonction
continue. Il s’ensuit que T™ f converge vers une fonction ® € E et comme
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IT"f — T"g|loo < 2% lf = glloo, par passage & la limite, il vient que ®
est indépendante du choiz de f dans E.

3. Tl est clair que pour tout 4, A;([0,1]?) C [0,1]%. On en déduit que
si Im f C [0,1)? (on peut prendre f : ¢t — (¢,0)), alors pour tout n € N,
ImT"f C [0,1]? et comme [0, 1]? est fermé, on en déduit par passage &
la limite, Im & C [0, 1]2. Montrons maintenant que tout élément de [0, 1]
est dans Im ®.

k / N
Les couples de la forme (2—”, o ), ou 0 < k, ¢ < 2™ sont denses dans

[0,1]%. En effet, si (z,y) € [0,1]%, n € N et (k,£) = (E(22"), E(y2")), on

kL 1
- —. = < -
(z,y) (2n, 2")H < o Posons

E /
= — ., < 3 <2n .
Co={(5r 57 ) 0<me<2

On choisit f telle que Im f contienne Cy = {(0,0), (0,1),(1,0),(1,1)}.
On montre qu’alors Im T" f contient C,, pour tout n € N, par récurrence.
On suppose la propriété vraie au rang n. Si g € E et z € Im g, il existe
t € [0,1] tel que z = g(t). Pour 7 € [1,4], il existe u € [0,1] tel que

" t+2—1 et donc t = 4u — i + 1. On a donc

a

Ai(z) = Ai(g(t)) = Ai(g(du —i+ 1)) = Tg(u)

et A;(z) € ImTg. Par hypothése ImT"f contient C,,, donc Im T"+!f
contient les ensembles A;(C,,), c’est-a-dire contient, pour 0 < k, ¢ < 27,

l k k42" k+2" £+27
2n+1 ? 2n+1 ’ 2n+1 ’ 2n+1 ) 2n+1 ) 2n+1 et

ntl g om
2n+1 ’ 2n+1 :

/ /

Or il est clair que tout élément > peut s’écrire sous 'une

on+1’ gn+1
de ces quatre formes selon que k', ¢/ < 2", k' <2" <V, k', ¢/ > 2" ou
0" < 2" < K. Ainsi Im Tt f contient C,,4 1, ce qui termine la récurrence.

Soit alors z € [0,1]%. Pour tout n € N, il existe z, € C,, tel que

Iz = zn| < 2% Comme C,, C ImT,f, il existe ¢, € [0,1] tel que

1
zn = T"f(tn). On a donc ||z — T f(t,,)]| < o’ On en déduit

1

1
< (I)_Tn oo an
o <N = Tofloe + 5

Iz = @(tn) || < [®(tn) — T f(tn)ll +
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Donc la suite (®(t,,)) converge vers z. De la suite (¢,) du compact [0, 1],
on peut extraire une sous-suite qui converge vers t. On a donc, puisque
® est continue, z = ®(¢). On conclut que Im ® = [0, 1]2.

4. Cette question est assez délicate. On va d’abord montrer le ca-
ractére 1/2-h6ldérien pour les nombres rationnels de la forme 4% avec
0 < k < 4™ et on terminera avec un argument de densité. En effet, il est
possible de calculer les images par ® de ces nombres. Soit ¢t = 4% € [0,1].
On écrit t en base 4 sous la forme ¢t = 0,ay ...a, ou les a; sont dans
{0,1,2,3}. Si t € [0,1/4] alors a; = 0 et, comme ® est point fixe de
T, on a ®(t) = A1(P(4t)) avec 4t = 0,az...a,. Si t € [1/4,1/2] alors
ap =1 et ona ®(t) = Ax(P(4t — 1)) avec 4t — 1 = 0,a3...a, et cest
pareil dans les deux cas restants. On a donc la formule suivante pour n
quelconque et 0 < k < 4™ :

®(0,a1az...an) = (Ag+10A4,410---0A,,+1)(0,0).

La formule est vraie méme si tous les a; sont nuls puisque A; fixe 'origine
et ®(0) = (0,0). De la méme maniére on peut ajouter des décimales
nulles aprés a, et la formule reste exacte. Prenons maintenant deux
rationnels 4-adiques t et ¢’ dans [0,1[. On écrit ¢ = 0,ajaz...a, et
t' = 0,b1bs...b, en prenant le méme n quitte & ajouter des 0 comme
on vient de 'expliquer. Supposons t # t’' et soit p le plus petit indice
tel que ap # by. On est alors certain que |t —t/| > R Posons M =

(Aapy+10°0A4,41)(0,0) et N = (Ap, 410 --0Ap,41)(0,0). Ce sont
deux points du carré a priori quelconques. On a alors, comme toutes les

. 1 .. ..
fonctions A; sont 5—11psch1tz1ennes,

1 1 2
1e(t) = (O] < 5= IM=N|| < 55 < T S 21t =t

Les rationnels 4-adiques formant un ensemble dense dans [0, 1] et ® étant
continue on a alors |®(t') — ®(¢)| < 24/|t' — t| pour tout (¢,t') € [0, 1]
et @ est 1/2-holdérienne. <

L’exercice suivant est l’occasion d’introduire la propriété de Borel-
Lebesgue qui, dans les espaces vectoriels normés, équivaut a la définition
séquentielle de la compacité.
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2.17. Propriété de Borel-Lebesgue

Déterminer les ouverts U de R™ vérifiant la propriété suivante :
quelle que soit la suite de fermés emboités d’intersection incluse dans
U, il existe un rang a partir duquel les fermés sont inclus dans U.

(Ecole normale supérieure)

> Solution.

Nous allons montrer que les ouverts cherchés sont ceux dont le
complémentaire K = R™ \ U est compact.

e Supposons K est compact et considérons une suite (F,,) décroissante
de fermés telle que m F, C U, ie. ﬂ (F, N K) = 0. Supposons que,

neN neN
pour tout n € N, F,, N K # 0 et choisissons un élément x,, dans chaque

ensemble F,, N K. La suite (z,) est une suite du compact K. On peut en
extraire une sous-suite (z,(,)) qui converge vers z € K. Soit n € N. Pour

p=n,onaz,p €Fop) CFy,) et comme Fo,y est fermé, x € Fo,).
On a donc = € m Fomny, i-e. x € m F,,.. En effet ces ensembles sont
neN neN

égaux : une inclusion est évidente et 'autre résulte de l'inclusion de
Fy(n) dans F,,. De plus, z € K, donc z € ﬂ (F,, NK), ce qui contredit

neN
Ihypothese. 11 existe donc ng tel que F,,y, NK = 0, i.e. F,,, C U. 4

fortiori, F,, C U pour tout n > nyg.

e Supposons que la propriété est vérifiée et considérons une suite
(x,,) d’éléments de K. Posons, pour tout n € N, F,, = {zg, k > n}.
Alors, comme {zy, k € N} C K et K fermé, on a F,, C K. La suite (F,,)

est décroissante. Si ﬂ F, =0 c Ualors il existe n € Ntel que F,, U

neN
et comme F,, C K, F,, = (). C’est manifestement faux. Donc ﬂ F,#0
neN
et comme ﬂ F,, est ’ensemble des valeurs d’adhérence de la suite (z,,),

neN
celle-ci possede une valeur d’adhérence et K est compact. <

Sans changement, on peut remplacer R™ par un espace vectoriel
normé quelconque. La propriété de l’énoncé équivaut a : pour toute suite
de fermés dont l'intersection est incluse dans U, il existe une intersec-
tion d’un nombre fini de ces fermés qui est incluse dans U. Pour le voir,
il suffit de remplacer la suite de fermés quelconque (F,,) par la suite

n
décroissante (G,,) définie par G,, = ﬂ Fi. On en effet ﬂ Fp = ﬂ Gg.
k=0 keN keN
En prenant le complémentaire, on woit que la propriété peut encore
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s’énoncer : si K est recouvert par une suite dénombrable d’ouverts, il est
recouvert par un nombre fini de ces ouverts. On peut démontrer qu’en
fait un compact K vérifie la propriété plus générale suivante (propriété
de Borel-Lebesgue) : si K est recouvert par une famille (U;);e1 d’ouverts,
il est recouvert par un nombre fini de ces ouverts.

Dans un espace vectoriel normé, les compacts sont les ensembles qui
vérifient la propriété de Borel-Lebesgue.

Les exercices suivants sont consacrés a la convexité. Le lecteur trou-
vera aussi quelques énoncés sur ce théme dans le tome 3 d’algebre (exer-
cices 4.44 4 4.47). Les premiers font simplement appel a la définition de
la convexité et auzr notions topologiques générales.

2.18. Un convexe non borné contient une demi-droite

Soit A C R™ un sous-ensemble fermé non borné et convexe. Mon-
trer que A contient une demi-droite.

(Ecole normale supérieure)

> Solution.

Quitte a translater A on peut supposer que O € A. On va montrer que
A contient alors une demi-droite d’origine O. Comme A n’est pas borné,
pour tout entier p > 1 il existe un point M, de A tel que OM,, > p. Par
convexité tout le segment [OM,] est inclus dans A. Notons u, le vecteur
unitaire (pour la norme euclidienne) positivement colinéaire au vecteur
OM,,. La suite (up)p>1 est dans la spheére unité de R"™, sphere qui est
compacte. Elle admet donc une valeur d’adhérence u. On va montrer
que la demi-droite O + R u est incluse dans A. Voici une figure dans le
cas du plan :

On note ¢ : N — N une extraction telle que u,(,) converge vers u.
Soit M = O + Au un point de la demi-droite (A € Ry ). La suite de point
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O + Aug(p) converge vers M et ces points sont tous dans A pour p assez
grand. Comme A est supposé fermé, M € A. <

Le lecteur pourra montrer que le résultat reste vrai si A n’est pas
fermé. On peut aussi noter que le résultat devient fauzr en dimension
infinie : il suffit de prendre pour A ’enveloppe convexre d’une suite libre
(en)n>0, avec |len] qui tend vers linfini.

2.19. Segment intérieur & un convexe

Soit X une partie convexe de R™ d’intérieur non vide, a un point
intérieur a X et b un point adhérent & X. Montrer que [a, b[ est inclus
dans l'intérieur de X.

(Ecole polytechnique)

> Solution.

On commence par choisir une norme || || sur R”, par exemple la norme
euclidienne usuelle. Comme ’adhérence de X est aussi convexe, on peut
déja affirmer que [a,b] C X.

Montrons tout d’abord que [a, b[C X. Par hypothése, on peut choisir
r > 0 tel que B(a,r) C X. Soit x € ]a,b[ que l'on écrit z = (1 — t)a + tb

avec t € |0, 1[. Lhomothétie h de centre x et de rapport % envoie a

sur b. L’image par h de B(a,r) est la boule B(b, ?r) Comme b est

adhérent a X, cette boule contient au moins un point y de X. Mais alors,
x est sur le segment joignant y et h=1(y) € B(a,r). Par convexité de X,
x e X.

11 est alors clair que [a,b[ est inclus dans lintérieur de X. En effet,
si y € ]a,b[, on consideére x € ]y,b[ et 'homothétie h' de centre = qui
transforme a en y. L’'image de B(a,r) est une boule ouverte de centre y
incluse dans X, car tout point de cette boule est sur le segment qui joint
x a un point de B(a,r).
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D’ou le résultat. <

2.20. Partie convexe dense

Soit X C R™ une partie convexe et dense. Montrer que X = R".
(Ecole polytechnique)

> Solution.

Notons que le résultat est évident pour n = 1 : une partie convexe
de R est un intervalle et le seul intervalle dense dans R est R lui-méme.
Revenons au cas général et considérons un point M quelconque de R".
On veut montrer que M € X. Quitte a translater la partie X on peut
supposer que M est l'origine. Considérons les 2" points A. = (e1,...,&p)
ou les € valent +1. Ils forment un hypercube de centre 'origine. Ces
points ne sont pas forcément dans X mais par densité de X on peut

1
trouver des points B. a distance inférieure a 1 de A. (pour la norme

infinie). Comme le laisse penser la figure suivante en dimension 2 on va
prouver que l'origine est combinaison convexe des points B. :

(_1.71) (1.71)
O
(1-1) (171)

On raisonne par récurrence sur n en démontrant ’assertion suivante :
si pour tout € = (e1,...,e,) € {£1}" on dispose d’un point B, dont la
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k-ieme coordonnée a le signe de g5 pour tout k, alors I’enveloppe convexe
des B, contient 'origine.

Le résultat est clair pour n = 1. Soit (g1,...,6,—1) des signes quel-
conques. Le point B, . .. 1) asa dernicre coordonnées strictement po-
sitive (et les autres coordonnées ont le signe des ¢j). De méme le point
Be,,...en,—1) @ sa derniere coordonnées strictement négative. 1l existe
donc t €10, 1] tel que le point

C(Elvw-yan—l) - (1 - t)B(Eh--qul) + tB(511-~75n7_1)

ait sa derniere coordonnée nulle, les autres coordonnées ayant gardé les
signes des €.

Il suffit d’appliquer I'hypothese de récurrence aux points C., . . )
sans tenir compte de la derniere coordonnée : I'origine est une combinai-
son convexe des C(., .. .. ,) doncaussides B, . .. )parassociativité. <

Notons que le résultat devient faur en dimension infinie : un sous-
espace vectoriel strict, qui est évidemment convexe, peut étre dense.
C’est par exemple le cas du sous-espace des fonctions polynomes dans
(C°([0,1],R), || |leo) d’aprés le théoréme de Weierstrass.

Dans les exercices suivants on pourra étre amené a utiliser le
théoréeme de projection sur un convere fermé. Rappelons ce résultat
trés important que le lecteur trouvera dans le tome 8 d’algebre (exercice
1.43) pour le cas euclidien et au chapitre suivant (exercice 3.17) pour
le cas d’un espace de Hilbert. Soit E un espace euclidien et K une
partie non vide, convexe et fermée de E. Pour tout x € E il existe un
unique point p(x) € K, appelé projeté orthogonal de x sur K, tel que
d(z,K) = ||z — p(x)||. De plus, on a {x — p(x),y — p(x)) < 0 pour tout
y € K. En particulier si x ¢ K Uhyperplan affine H passant par p(z) et
de vecteur normal x — p(x) sépare K et x : K est entiérement contenu
dans 'un des demi-espaces fermés délimités par cet hyperplan (et x est
dans Uautre demi-espace ouvert). On dit que H est un hyperplan d’appui
en p(x). L’énoncé ci-apres démontre lexistence d’un hyperplan d’appui
en tout point de la frontiere d’un convere fermé.

2.21. Hyperplan d’appui

Soit E un espace euclidien et C un convexe fermé non vide de E.
On note p la projection sur C.
1. Montrer que p est continue.
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2. Soit ¢ un point de la frontiere de C. Montrer qu’il existe un
hyperplan d’appui de C en ¢, c’est-a-dire un hyperplan affine H de
E passant par ¢ tel que C soit contenu dans I'un des demi-espaces
fermés délimités par H.

(Ecole normale supérieure)

> Solution.
1. Soit z,z’ deux points distincts de E. On a :

lp(z) =p(@)|? = (p(z) —z+2—a'+a" —p(a),p(x) - p(z))
(p(x) = z,p(x) = p(a’)) + (z — 2', p(z) — p(2))
+(p(a) — 2, p(a) = p(x)).

Nous savons que le premier et le troisieme produit scalaire sont négatifs.

X

p(z) p(z)

Donc, avec I'inégalité de Cauchy-Schwarz, il vient

Ip(z) = p(a")|I* < (z — 2’ p(z) — p(a")) < ||z = 2’||[[p(z) — p(")]

et finalement ||p(z) —p(2’)|| < |Jz—2'||. La fonction p est 1-lipschitzienne
donc continue sur E.

2. Soit ¢ un point de la frontiere de C. Ce point est adhérent & E\ C
donc on peut se donner une suite (zj)k>0 de E'\ C qui converge vers c.
Par continuité de p la suite p(xy) converge vers p(c) = ¢ et en chacun
des points p(zj) on dispose d’un hyperplan d’appui (voir la remarque

zy — p(zk)
ok — p@)]
normal & cet hyperplan. La suite (ug)r>0 est dans la spheére unité de
E qui est compacte. On peut donc en extraire une sous-suite conver-
gente (Uy(k)) k0. Notons u sa limite et H I'hyperplan affine d’équation
(u, ) = (u, c). Cet hyperplan affine contient c¢. On va montrer qu’il s’agit
d’une hyperplan d’appui en ¢ de C. Soit z € C. Pour tout entier k on a
(Ugp(r), 2 = P(Zpk))) < 0. Or p(x41)) tend vers p(c) par continuité de p.

précédent exercice). On note uy = un vecteur unitaire
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Donc par passage a la limite (u, z —p(c)) < 0 et (u, z) < (u,c). Ceci vaut
pour tout z de C. Donc C est inclus dans un des demi-espaces fermés
délimités par H et H est un hyperplan d’appui. <

Notons qu’il n’y a pas forcément unicité de hyperplan d’appui en un
point (prendre par exemple pour ¢ U'un des sommets d’un carré dans le
plan). On peut aussi obtenir le résultat de la seconde question & laide
du théoréme de Hahn-Banach dans sa forme géométrique.

Ce résultat est utilisé dans la preuve du théoréme de Krein-Milman

qui suit (les deux exercices sont extraits du probléme posé aux ENS en
1996).

2.22. Théoréme de Krein-Milman

Soit E un espace euclidien et K un convexe compact non vide de
E. Un point a de K est dit extrémal lorsque K \ {a} est convexe,
autrement dit si a n’est pas le milieu de deux points distincts de K.

1. Soit @ € K. On suppose que a est dans un hyperplan d’appui
H de K. Montrer que a est un point extrémal de K si, et seulement
si, a est un point extrémal du convexe compact K N H.

2. Montrer que K est égal a ’enveloppe convexe de ses points
extrémaux.

(Ecole normale supérieure)

> Solution.

1. Notons que K N H est non vide (il contient a), convexe en tant
qu’intersection de deux convexes et compact comme intersection du com-
pact K et de 'hyperplan H qui est fermé.

e Supposons que a est un point extrémal de K. Alors K \ {a} est
convexe, donc (K \ {a}) NH = (KNH) \ {a} aussi comme intersection
de deux convexes. Par conséquent a est un point extrémal de K N H.

e Réciproquement, supposons que a est un point extrémal de K N H.

u—+ v
Soient u et v dans K tels que a = +

- On veut montrer que u = v = a.

Soit ¢ une forme linéaire sur E telle que H ait pour équation p(z) = .
Comme K est contenu dans un demi-espace fermé délimité par H, on a

par exemple p(u) < A et ¢(v) < A. Mais comme p(a) = elu) + o) _ Y

on a forcément ¢(u) = p(v) = X : u et v sont dans HN K et par suite
U=0v=a.

2. On montre le résultat par récurrence sur la dimension p du sous-
espace affine engendré par K. Si p = 0, alors K est un singleton et le
résultat est vrai. On suppose le résultat vrai jusqu’au rang p — 1 et on
se donne un convexe compact K qui engendre un sous-espace affine de
dimension p. Quitte & translater K et a remplacer E par un sous-espace
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vectoriel on peut supposer que p = dimE. Soit ¢ € K. On cherche a
écrire ¢ comme barycentre a coefficients positifs de points extrémaux de
K. Distinguons deux cas :

e Si ¢ est sur la frontiere de K, I'exercice précédent assure I’existence
d’un hyperplan d’appui H de K en ¢. On pose K’ = KN H. 1l sagit
d’un convexe compact qui engendre un sous-espace affine de dimension
< p—1 auquel on peut donc appliquer I'hypothése de récurrence. Comme
les points extrémaux de K’ sont des points extrémaux de K d’apres la
question précédente, on a terminé.

e Si c est intérieur a K on considere D une droite quelconque qui passe
par z. L’intersection de D et de K est une partie convexe de D qui est en
plus compacte (car D est fermée). Il s’agit donc d’un segment [a, b]. Les
points a, b sont clairement sur la frontiere de K et on peut leur appliquer
le cas précédent. Par associativité, ¢ est barycentre a coefficients positifs
de points extrémaux. <

Notons que le dernier argument montre immédiatement que K est
l’enveloppe convexe de sa frontiére. Cette question plus simple a été aussi
proposée a l’oral de UEcole polytechnique.

L’exercice suivant est tres long et certains candidats ont pu se voir po-
ser seulement la premiére question. On y utilise encore le résultat sur les
hyperplans d’appui dans la question 3, mais on peut légitimement penser
que le candidat a pu se servir du résultat sans avoir a le redémontrer.

2.23. Diametres d’un convexe compact plan

Soit K un compact convexe de R? d’intérieur non vide.

1. Soit O un point intérieur a K. Montrer qu’il existe une fonc-
tion f: R — R}, 27-périodique, telle qu’en coordonnées polaires
de centre O, K est I'ensemble {M(p,0), 0 < p < f(0)}. Montrer que
f est continue.

2. Soit g : [0, 7] — R continue telle que

/ g(x) cosz dz :/ g(z)sinxzdx = 0.
0 0

Montrer que g s’annule au moins deux fois dans ]0, 7[.
3. Montrer que le centre de gravité G de K est intérieur a K.
4. Montrer que G est le milieu d’au moins trois < diametres > de
K (c’est-a-dire trois segments joignant deux points de la frontiere).

(Ecole normale supérieure)
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> Solution.

1. On consideére un repere orthonormal de centre O. Pour tout 6 € R,
on note uj le vecteur de coordonnées (cosf,sinf) et dy la demi-droite
d’origine O et de vecteur directeur 5. L'intersection de K et de dy est un
convexe compact de la droite donc un segment d’origine O. Il n’est pas
réduit au singleton {O} car O est intérieur a K. On note f(6) sa longueur.
On obtient une application f de R dans R, 2m-périodique. Un point M
de la demi-droite dy appartient & K si et seulement si OM < f(6). Ainsi
K est bien 'ensemble des points M(p, 6) vérifiant 0 < p < f(6).

Montrons maintenant que f est continue. Soit g € R, My le point
de coordonnées polaires (0, f(6p)) et € € |0, f(6o)].

Le point M; de coordonnées polaires (6y, f(6p) + €) n’appartient pas
a K. Comme le complémentaire de K est ouvert, il existe » > 0 tel que
si MiM < r alors M ¢ K. La figure suivante laisse penser que f() ne va
pas pouvoir étre beaucoup plus grand que f(6p) pour 6 proche de 6.

N

Précisons cela. Les tangentes issues de O au cercle de centre M; et
de rayon r, font avec la droite dg, un angle . Si |6 — | < «, la droite
dg rencontre le cercle de centre M; et de rayon r en un point qui est a
une distance de O inférieure & OM; = f(6y) + € et qui n’appartient pas
a K. On a donc f(6) < f(6o) +e.

On va procéder de méme pour obtenir une minoration de f(#). On
utilise cette fois le fait que le point O est intérieur a K. Il existe donc
r’ €10, f(6p)[ tel que K contienne le disque de centre O et de rayon
r’. Comme 0 < f(€9 j < 1, 'image de ce disque pas ’homothétie de

0

centre My et de rapport

%9) est inclus dans K. Son centre est My de
0

coordonnées polaires (0o, f(0p) — €) et son rayon r” est inférieur ou égal
ac.
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Les tangentes issues de O au cercle de centre My et de rayon r” font
avec la droite dp, un angle . Si |# — 6| < 3, la droite dy rencontre le
cercle de centre My et de rayon r”/ en un point qui est & une distance de
O supérieure & OMs et donc supérieure & f(6g) — €, et qui appartient a
K. On a donc f(0) = f(6p) — e.

On obtient, pour |6 — 6] < max(«, ), |f(6o) — f(8)] < €, ce qui
montre la continuité de f.

2. Cette question est tres classique et le lecteur en trouvera une
généralisation dans l’exercice 4.4. du tome 2 d’analyse. Si g gardait
un signe constant sur |0,7[, il en serait de méme de g X sin et
/0 " g(x) sin(z) dz ne pourrait étre nul. Donc g s’annule au moins une fois
sur 0, w[. Supposons que g ne s’annule qu’une fois sur |0, 7| en un point
a. D’apres ce qui précede elle change nécessairement de signe en o. Mais
alors la fonction  — g(z) sin(z — «) garde un signe constant sur |0, 7|
et ne s’annule qu’en a. On en déduit que /Oﬂg(x) sin(x — a)dx # 0, ce
qui contredit I’hypothese puisque

/ g(z)sin(z—a)dz = cosa/ g(x) sinxdxfsina/ g(z)coszdr = 0.
0 0 0

3. Supposons par I'absurde que G n’est pas intérieur a K. Il est
donc extérieur & K ou sur la frontiere de K. Dans les deux cas on peut
trouver une droite D passant par G telle que K soit contenu dans I'un
des demi-plans fermé délimité par D. Dans un repere centré en G bien
choisi R = (G,ﬁ,?) tous les points de K ont une ordonnée positive
et comme K est d’intérieur non vide il existe un disque ouvert D C K

——
sur lequel 'ordonnée est strictement positive. On a donc / / (GM,v) >
K

/ / <G—1\>/I, v) > 0 ce qui contredit la définition de G.
D

4. Puisque G appartient a lintérieur de K, on peut appliquer les
résultats de la premiere question avec O = G. Le point G est milieu d’un
segment joignant deux points de la frontiere de K s’il existe 6 € R tels
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que f(0+ ) = f(0). On cherche trois diametres différents et donc trois
solutions de cette équation différentes modulo 7.

——
Par définition de G, on a / / GM = 0, ce qui en coordonnées polaires
K

2m rf(0)
donne / / GMpdpdf# = 0. En séparant les deux coordonnées, on
Jo Jo
obtient

27 pf(0) 1 f2r
/ / pzcosedpdezf/ £3(0) cos0d0 = 0
o Jo 3 Jo

1 2
et de méme 3 / f3(8)sin@df = 0. Pour utiliser la question précédente,

0
on se rameéne & l'intervalle [0, 7] en coupant ces intégrales en deux en 7 et
en faisant dans la deuxieme intégrale obtenue le changement de variable
x =60 —m. On obtient

2m ™ ™
/ 13(0) cos6df = / 20 cos@d@—/ f3(x + ) cosxdx
Jo Jo 0

_ /” (£2(0) — £3(0 + m)) cos(#) 0 = 0.
0

Avec la deuxieme intégrale, on obtient
/ (£%6) ~ 10 +)) sind6 = 0.
0

D’apres la question précédente, I'équation f3(0) — f3(0 + 7) = 0, i.e.
f(6+m) = f(0) possede au moins deux solutions distinctes sur |0, 7r[. Pour
en trouver une troisieme, nommons « une des solutions et considérons
la fonction g définie sur R par g(x) = f(x + «). Par un changement de
variable, on obtient, puisque les fonctions sont 27w-périodiques,

27 2T 27T
/ g3(x)cosa:dx:/ iz +a) COS.’Edl‘:/ 13(0) cos(6 — ) d

JO 0 0

27 2
= cos £3(0) cos 6 df + sin o f3(0)sinfdd =0
0 0

2w
et de méme / g3(x) sinz dz = 0. En procédant comme précédemment

0
pour f, on en déduit
/ (gg(a:) — g3z + 7r)) coszdr = / (gg(x) — g%z + 7r)) sinzdr = 0.
0 0
Ainsi 'équation g(x + 7) = g(z), t.e. f(z +a+ ) = f(xz + «) possede

deux solutions distinctes 5 et v sur |0, 7| et 'équation f(z + w) = f(x)
possede trois solutions a, o + 8 et a + y distinctes modulo 7. <
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L’énoncé suivant concerne encore les compacts convezes du plan. On
y utilisera encore les propriétés de la projection sur un convere compact

(cf. page 99).

2.24. Formule de Steiner-Minkowski en dimension 2

Soit K un convexe compact de R? euclidien et § > 0. On pose
K; = {z € R?, d(z,K) < d}.

1. Montrer que K; est un convexe compact.
2. On suppose désormais que 0K est paramétré par un arc
simple de classe C2. Déterminer aire de Ks.
(Ecole normale supérieure)

> Solution.

1. Pour tout z € R2, la fonction y — ||z — y|| est continue (elle est
méme 1-lipschitzienne) et nous savons qu’elle atteint son minimum sur
le compact K en un unique point p(z). Soient x et 2’ dans Ks, A € [0, 1].
Comme K est convexe, Ap(z) 4+ (1 — M)p(2’) appartient a K et

Az + (1= 2)2",K) < [[(Az + (1= Na') = (Ap(x) + (1 = N)p(a’))|
<Az = p(@)ll + (1 = M|z’ = p()]
<A+ (1—=X)d=0.
Ainsi Az + (1 — M)2’ appartient a Ks et K; est bien convexe.

Soit (2 )n>0 une suite d’éléments de Ks qui converge vers = € R2. La
fonction « — d(z, K) est continue puisque 1-lipschitzienne. On a donc

A K) = T _d(a,, K) <5,

car d(z,,K) < 0 pour tout entier n. On en déduit que x appartient a Ks
qui est donc fermé.

Enfin K est borné : il existe k > 0 tel que ||y|| < k pour tout y € K.
Pour tout z € K, on a alors

2] < llp(@)]| + llz = p(z)]| < k + 6.

L’ensemble K est donc borné. C’est un fermé borné et donc un compact
de R2.

L’ensemble Ky est appelé un voisinage tubulaire du compact K.

2. Pour nous donner une idée du résultat, considérons le cas o1 K est
un disque de rayon R. La frontiere de K est alors un cercle de longueur
L = 27R. Le compact Ks est un disque de rayon R 4+ J et on a

A(Ks) = m(R+6)% = 7R? + 27R6 + 16% = A(K) + L + 762
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Nous allons montrer que la formule est la méme dans le cas général.

Nous supposons que l'arc K est régulier et choisissons un pa-
ramétrage normal F : R — R? de 0K, L-périodique, o1 L est la lon-
gueur de JK. Nous admettrons que si K est convexe, alors en tout point
m € 0K, la courbe JK est tout entiere d’un seule c6té de la tangente a
0K en m et qu’on peut choisir le paramétrage F pour qu’elle soit tou-
jours & gauche de cette tangente orientée par F’(s). D’apres 'exercice
2.22, K est inclus dans ’enveloppe convexe de JK, donc aussi inclus
dans le demi-plan situé a gauche de la tangente. Le plan étant orienté
dans le sens trigonométrique, on note pour tout réel s, n(s) le vecteur
unitaire tel que (F'(s),n(s)) soit une base orthonormale directe. Il est
dirigé vers l'intérieur de K. On peut montrer qu’alors la courbure k est
toujours positive, ce qui nous sera utile pour la suite. Pour tout s € R,
on a F’(s) = k(s)n(s). Au voisinage d’un point F(sg) tel que k(sg) < 0,
on a

1
F(s) = F(so) + (s — s0)F'(s0) + 5(5 — 50)%k(s0)n(50) 4+ o((s — 50)?).
Ceci est impossible puisque K est inclus dans le demi-plan limité par la
tangente & F(so) dirigé par n(sg). On a donc, pour tout s, k(s) > 0.
Soit z un élément de R? qui n’appartient pas & K et s € R tel que
p(x) = F(s). Nous savons que, pour pour tout ¢t € R, on a

(z —F(s),F(t) = F(s)) <0.

La fonction t — (xz — F(s),F(t) — F(s)) posséde donc un maximum en
s : sa dérivée en s est nulle, i.e. (x —F(s),F’(s)) = 0. Ainsi x appartient
a la normale & 0K en F(s). Réciproquement, si z appartient & la normale
a OK en F(s) et n’appartient pas a K, alors p(xz) = F(s), car K est dans
le demi-plan limité par la tangente & OK en F(s) ne contenant pas z.
Un point appartient donc & Ks \ K 81l existe s € R et ¢ € ]0, ] tel
que x = F(s) — tn(s). Ainsi K; est limité par la courbe de paramétrage
G : R — R? L-périodique défini par G(s) = F(s) — dn(s) et le domaine
K;\K est paramétrée par Papplication ® : [0, L[x]0, §] — R? définie par
D(s,t) = F(s)—tn(s). La fonction ® est injective car si z = F(s) —tn(s),
alors F(s) = p(z), ce qui détermine s de maniére unique, puis ¢. De plus,
elle est de classe C! et l'on a 9% _ F'(s) 4+ tk(s)F'(s), ou k(s) est la

Js
0P

courbure de K en F(s), et i —n(s). On sait que k(s) > 0, donc

det (%‘f, %‘f) = (1 + th(s)) det(F'(s),n(s)) = —(1 + th(s)) < 0.

Ainsi ® est un C! difféomorphisme de [0, L[x]0, §] sur K\ K. On obtient
par le changement de variables (s,t) — ®(s,t) de R,
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A(Ks \ K) = /OL (/05(1 +tk(s))dt> ds = 6L + § /OL k(s)ds

Il reste a calculer cette derniere intégrale.

L’application F’ est une application de classe C! de R dans le cercle
unité. D’aprés le théoréme de relevement de classe C!, il existe une
application # : R — R de classe C' telle que, pour tout s € R,
F'(s) = (cos(8(s)),sin((s))). En dérivant, on obtient, pour tout s,

k(s)n(s) = 0'(s)(—sin(6(s)),cos(0(s))) = 0'(s)n(s) et donc k(s) = 6'(s).

On a done
/ ds—/ 0'(s)ds = O(L) — 0(0).

Comme F/(L) = F/(0), (L) — 6(0) est un multiple de 27.

Montrons que l'application F/ est injective sur [0, L[, en raisonnant
par Pabsurde. Soient s et s’ deux éléments distincts de [0, L[ tels que
F'(s) = F'(s’). Les tangentes & 0K en F(s) et F(s') sont paralleles et
K est inclus dans la bande limité par ces droites. De plus on sait que
K est dans le demi-plan qui est a gauche de la tangente orientée par
F'(s). Cette condition ne peut pas étre réalisée en F(s) et F(s). Donc
F’ est injective sur [0,L[. On en déduit que 6([0,L[) est un intervalle
de longueur inférieure ou égale & 2. Donc 6(L) — 6(0) = 0 ou 27. De
plus 6 est croissante (car k > 0) et injective sur [0,L[ (comme F’) donc
O(L) — 6(0) = 2x. On conclut enfin que A(Ks \ K) = 6L + 762 et donc

| A(K5) = A(K) + 0L + 76%| <

Cette égalité constitue la formule de Steiner-Minkowski. La for-
mule reste vérifiée pour un compact convexe quelconque du plan. On la
démontre d’abord pour les polygones puis on l’étend aux convexes com-
pacts quelconques par passage a la limite. Elle se généralise en dimen-
sion d, l’ensemble K5 étant défini de la méme maniére; de méme, on
la démontre d’abord pour les polytopes. Si on note V le volume dans
R4, pour un conveze compact quelconque K de R?, il existe des scalaires
L;(K) (0 <i<d) tels que, pour tout 6 > 0, on ait

d

i=0
ot Lo(V) = V(K), L1(K) = A(K), aire de K (sa longueur si d = 2) et
Lq(K) = B(d), volume de la boule unité de RY. On en déduit la formule

de la peinture : A(K) = lim w

- Si on recouvre la frontiére
6—0
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de K d’une couche de peinture d’épaisseur infiniment mince, le volume
de peinture V(Ks) — V(K) est égal a JA(K), en se limitant auz termes
du premier ordre. Si par exemple, K est la boule unité de R¢, alors K
est une boule de rayon 1+ 6, de volume (1 + 0)¢3(d). On en déduit
que A(K) = dB(d).

Les deux exercices qui suivent concernent des questions de point fize
pour des applications continues stabilisant un compact convexe.

2.25. Théoréme de Kakutani

Soit E un espace vectoriel normé réel de dimension finie, K un
convexe compact non vide E. Soit u € L(E) tel que u(K) C K. Pour

tout n > 1, on considere u,, = (IdE +u 4 u"h).
1. Montrer que H = ﬂ un (K) # 0.
n>=1

2. Montrer que x € H si et seulement si u(x) = x.
(Ecole polytechnique)

> Solution.

1. Comme u, est continue, un(K) est un compact et comme u,
est linéaire, u,(K) est convexe. On observe aussi que si z € K alors
z+uz)+-+u" ()

un(z) =
n
K. On va essayer d’utiliser le théoreme des compacts emboités. On a
2
déja uz(K) C u1(K) = K. Toutefois si y = w € uz(K)

on ne voit pas pourquoi y serait aussi dans us(K). En revanche si

€ K car K est convexe. Ainsi, u,(K) C

2 3 / /
y - x+u(x)+lzl(x)+u (@) o ua(K) on peut écrire y = %@L(l’)
2
avec x’ = %(m) de sorte que y € ua(K). Cette idée se généralise.

Montrons que si n divise m alors u,, (K) C u,(K). Posons m = kn avec
k > 1. Pour tout x € K on a

1 kn—1 k—1n—1 . 1 -
= — n+] _ /
)=y 35 00 B ) = ) =l
avec ¢’ = % Z n(z) € K (car K est convexe). On a donc montré que si

n divise m alors Um (K) C un(K). La suite (un1(K))n>1 est donc une suite

décroissante de compacts convexes non vides. Ainsi, ﬂ Un1(K) est un
n>1
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compact non vide. Il est inclus dans H = () un(K), car un(K) C u,(K)
n>1
pour tout n et en fait égal a H, car 'inclusion inverse est évidente. Donc
H est également un convexe compact non vide.
2. Tl est clair que si u(z) = x, alors u,(x) = x pour tout n et donc
x € H. Inversement, soit x € H. Pour tout n il existe donc un vecteur
yn € K tel que = up(y,). On a alors :

u(x) —r= un(yn) —Yn

n n—-+oo

car les suites (Yn)n>1 €t (4" (yn))n>1 sont dans K donc bornées. Ainsi,
u(z) =z. <

Le résultat reste wvrai en dimension infinie avec la méme
démonstration, da condition de prendre uw continu. On en déduit
facilement que st uq,...,u, sont des endomorphismes qui stabilisent K
et qui commutent deux a deux, alors les u; ont un point fixe commun
dans K. Plus précisément, ’ensemble des points fizes communs auz u;
est un compact convere non vide. La propriété a été démontrée pour
p = 1 dans lexercice. Si elle est vrai au rang p, l'ensemble des points
fizes communs @ u,...,u, est un compact convezre H non vide, stable
Par Upy1, CAT Upy1 cOMMute avec Ui, ..., u,. L’ensemble des points de
H stables par u,4+1 est donc un compact convexe non vide.

Le lecteur connaissant la propriété de Borel-Lebesgue pourra méme
généraliser cela a une famille commutative quelconque (u;)ic1r d’endo-
morphismes stabilisant K (résultat connu sous le nom de théoréme de
Kakutani commutatif).

\

La premiere question de [’exercice suivant est trés souvent posée a
loral.

2.26. Application 1-lipschitzienne dans un compact convexe

Soit X un compact convexe non vide d’un espace vectoriel normé
E et f: X — X une application 1-lipschitzienne.

1. Montrer que f admet au moins un point fixe.

2. Montrer que si la norme est euclidienne, ’ensemble des points
fixes de f est un compact convexe.

3. Montrer que si la norme n’est pas euclidienne, le résultat
précédent peut étre faux.

4. Pour une norme quelconque, si x et y sont des points fixes de
f, montrer qu’il existe toujours un point fixe z de f tel que

1
lz =zl =lly = 2l = 5 llz = yll.

(Ecole normale supérieure)
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> Solution.
1. L’idée est de se ramener & une application contractante en pertur-

bant un peu f. Soit zg un élément quelconque de X. Pour tout n € N*,

considérons 'application f, : X — X qui a x associe (1— % ) flz)+ % zg.

L’application f,, prend ses valeurs dans X, car f,(x) est un barycentre
a coeflicients positifs de deux points de X et X est convexe. Pour x et y
dans X on a

1)~ Fu@ll = (1= D) IF@) ~ f@ < (1= =)y~

donc f, est (1 — l)—lipschitzienne7 donc contractante. L’ensemble X
n

étant complet puisque compact, f, possede un (unique) point fixe u,. La
suite (up)n>1 du compact X possede une valeur d’adhérence u : il existe
une suite extraite (uy(n))n>0 qui converge vers u. Pour tout n € N,

1 1
(1 - W> Ftpm) + 20580 = Ut

Par passage a la limite, f étant continue puisque lipschitzienne, on ob-
tient f(u) = u. Donc f admet au moins un point fixe dans X.

2. Notons C ’ensemble des points fixes de f. Il est non vide d’apres
la question précédente. Si (z,)n>0 est une suite d’éléments de C qui
converge vers x, on a, par continuité de f,

= 1. = 1. =
f@)= i flen) = Mm@ =2z,
donc x appartient a C et C est fermé. Comme il est inclus dans le compact
X, il est lui-méme compact.

Montrons maintenant que C est convexe. Soit (z,y) € C? et A € [0, 1].
Posons z = Az + (1 — A\)y. On a

[z —yll = 1 f(x) = FW) < If (@) = fFR+1£(z) = F@)l
<z =z +llz =yl < (@ =Nz =yl + Mz -yl
<z -yl

Ainsi toutes les inégalités sont des égalités : de la premiere, on déduit
que f(z) appartient au segment [f(z), f(y)] = [z,y]. De la seconde, on
déduit que ||z — f(2)]| = ||x—z||. Cela définit un point unique du segment
[z,y]. On a donc f(z) = z. Le point z appartient & C et C est convexe.
3. La preuve précédente reposait sur le cas d’égalité dans 'inégalité
triangulaire pour une norme euclidienne. Pour une norme quel-
conque l’ensemble C reste toujours compact mais il n’est pas
forcément convexe. Munissons par exemple R? de la norme définie par
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2
I(z,y)|| = max(|z]|, |y|). Considérons le compact convexe X = {07 %} et
I'application f : (z,y) — (z,22). On a clairement f(X) C X et pour

(z,y), (z',y’) deux points de X,

1f(z,y) — F@ )] = |l — 2’ 2% — 2')|
= max(|z — 2’|, |z — 2’| (2 + 2"))
<o -2 < |l(=y) — (@, 9)]-

Ainsi f est 1-lipschitzienne, mais ’ensemble des points fixes de f qui est
I’arc de parabole {(m,xz), S [O, %]} n’est pas convexe.
4. Soient z et y deux points fixes de f et K={z € X, ||z — 2| =

ly—z| = % |z —y||}. Il S’agit de démontrer que K contient un point fixe
de f. Pour cela nous allons démontrer que K est un convexe compact
non vide, stable par f et appliquer le résultat de la premiére question.
e [’ensemble K n’est pas vide, car il contient %(z + ), qui est dans
X, car celui-ci est convexe.
e Montrons que K est fermé. Soit (2,,)n>0 une suite d’éléments de K
qui converge vers z. On a, par continuité de la norme,

. 1
o=z =t~ zall = 2z~ yl
et de méme, ||y — z|| = %”[L’ — y||. Ainsi z est dans K, donc K est fermé

et par suite compact car il est inclus dans le compact X.
e Soit z et 2’ deux éléments de K, A € [0,1], w = Az + (1 — X\)z’. On
a

e = wll = M = 2) + (L= Az — )| < Ml — 2] + (1 = Nl — ]

1 1
A=l =yl = 5l = yl.

1

Al —
eyl +
On montre de méme que ||y — w|| < % |z — y||. On en déduit que

1 1
lz =yl < llz = wl +lly = wll < Fllz =yl + Sl —yll < llz =yl

Ainsi les inégalités sont des égalités donc on a ||z — w|| = ||y — w|| =
% |z — y|| et w appartient & K. Cela montre que K est convexe.
e Soit z€ K. On a

[z = f() = [If(z) = FR <l = =] = %Ilfc—yll
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1
2
précédent que f(z) appartient & K. Ainsi K est stable par f.

D’apres la question 1, la restriction de f a K posseéde un point fixe. <

et de méme ||y — f(2)[| < 5|z —y[|. On en déduit comme dans le point

Les exercices qui terminent ce chapitre sont consacrés au théeme de
la connezité par arcs (la notion générale de connezité n'est pas au pro-
gramme des classes préparatoires).

2.27. Existence d’un extremum

Soit n > 2 et f: R™ — R continue telle que f~!(a) est compact
pour tout a € R. Montrer que f admet un extremum global.
(Ecole normale supérieure)

> Solution.

On peut déja noter que le résultat est faux pour n = 1 : il suffit de
prendre f = Idr par exemple. Quitte & ajouter une constante a f on
peut supposer que 0 est dans 'image de f. Soit K = f~1(0). C’est par
hypothése un compact non vide R™. Soit » > 0 tel que K C B(0,r).
La fonction f ne s’annule plus sur C = R™ \ B(0,7) et cet ensemble est
connexe par arcs (c’est cette propriété qui est fausse en dimension 1).
Donc f garde un signe constant sur C.

Sur le compact B(0,r) la fonction continue f admet un minimum m
et un maximum M avec m < 0 < M. Si f est strictement positive sur C
alors m est le minimum global de f et si f est strictement négative sur
C alors M est le maximum global de f. <

2.28. Complémentaire d’un hyperplan

Soit E un espace normé réel et H un hyperplan de E. Montrer
que E\ H est connexe par arcs si et seulement si H n’est pas fermé.
(Ecole normale supérieure)

> Solution.

Soit ¢ une forme linéaire sur E dont le noyau est H. Les ensembles
H, Ht = {z € E, p(x) > 0} et H = {z € E, ¢(z) < 0} sont convexes
(en effet si on a par exemple p(z) > 0, ¢(y) > 0 et ¢t € [0,1], on en
déduit p(tz + (1 —t)y = tp(z) + (1 — t)p(y) > 0) donc connexes par
arcs. Nous savons (voir 'exercice 1.27) que H est fermé si et seulement
si ¢ est continue.

e Supposons H fermé et montrons que E\ H = HT U H™ n’est pas
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connexe par arcs. Pour cela on va montrer qu’il est impossible de trouver
un chemin continu inclus dans E\ H qui joint un vecteur e € H™ au vec-
teur —e € H™. En effet, si un tel chemin v : [0, 1] — E existait, la fonction
continue o+ : [0,1] — R prendrait en 0 une valeur strictement positive
et en 1 une valeur strictement négative mais ne s’annulerait jamais. Cela
contredirait évidemment le théoreme des valeurs intermédiaires.

e La situation précédente est évidemment celle que 1’on observe en
dimension finie. Supposons maintenant que H n’est pas fermé, c’est-a-
dire que ¢ n’est pas continue. Dans ce cas 'hyperplan H est dense dans
E (car H est un sous-espace vectoriel de E qui contient strictement H)
mais il est tout de méme assez spectaculaire que E \ H soit connexe par
arcs. Prenons ¢ € HT, par exemple tel que ¢(e) = 1. Comme HT et
H™ sont connexes par arcs, il nous suffit de construire un arc continu
inclus dans E\ H qui joint e et —e. Le sous-espace affine ¢ =1(1) = e+H
est également dense dans E. On peut donc trouver une suite (z,)n>1
de ce sous-espace qui converge vers —e. On peut supposer que de plus
que x; = e. Considérons alors I’application « : [0,1] — E définie de la
maniere suivante : v(0) = —e et

1 1

1 1
k+1k
ramétrage du segment qui joint xj & xx11. Il est clair que v est continu
sur ]0,1]. Le fait que la suite (x,),>1 converge vers —e implique la
continuité en 0. En effet, si € > 0 est fixé, on peut trouver N tel que
lzn + €]| < e pour n > N. Par convexité de la boule fermée de centre

Autrement dit, sur l’intervalle { }, v est simplement le pa-

—e et de rayon € on a ||y(t) +e|| = [|[7(t) —v(0)]] < e deés quet < %

L’arc continu v ainsi construit vérifie v(0) = —e et y(1) = e et comme
pour tout ¢t € ]0,1] on a ¢(y(t)) = 1 'image de larc est bien incluse dans
E\H. «

Pour résoudre l’exercice suivant on pourra utiliser le théoréme de
Riesz (voir exercice 2.1).

2.29. Complémentaire d’un compact

Soit E un espace normé réel de dimension infinie et K un compact
de E. Montrer que E \ K est connexe par arcs.

(Ecole normale supérieure)
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> Solution.

On suppose K non vide sans quoi le résultat est évident. Comme K est
compact il est borné et on peut trouver R > 0 tel que K € B(0,R). Il est
clair que le complémentaire de la boule ouverte B(0,R) est connexe par
arcs. Il nous suffit donc de montrer que tout point x € B(0,R) qui n’est
pas dans K peut étre relié par un chemin continu de E\ K & un point de
norme strictement supérieure a R. On va voir qu’on peut méme y arriver
par un segment. Soit R" > 0 tel que B(0,R) C B(z,R’). Supposons
que pour tout vecteur unitaire u la demi-droite x + R u rencontre K.
Cela implique que lapplication f : K — S(z,R’) qui & y € K associe
f) =z + R
ly — ||
on en déduit que S(z,R’) = f(K) est compact, ce qui est faux puisque
E est de dimension infinie (théoréme de Riesz). Il existe donc une demi-
droite issue de x qui ne rencontre pas K et cela permet de conclure. <

est surjective. Or f est clairement continue donc

2.30. Ensembles de Julia

Soit P dans C[X] de degré > 2. Pour tout n € N* on note
P, =PoPo---0oP (n facteurs). Soit Kp l'ensemble des nombres
complexes z tels que la suite (P,,(2)) est bornée.

1. Déterminer Kxz.
2. Montrer que Kp est non vide.
3. Montrer que Kp est compact.
4. Montrer que C \ Kp est connexe par arcs.
(Ecole normale supérieure)
> Solution.

1. Pour tout n € N*, on a P,, = X?". La suite (P,(2)) = (22") est
bornée si, seulement si, |z] < 1.
2. Soit o une racine du polynéme P — X. Alors la suite (P, («)) est

constante donc borné. Ainsi Kp contient o donc n’est pas vide.

3. Comme le degré de P est supérieur a 2, |P](zT)|
quand |z| tend vers +oo. Ainsi, il existe A > 0 tel que |z| > A implique
|P(2)] > 2|z|. Sl existe ng € N tel que |Pp,(2)] > A, on obtient pour
tout n = no, |[Pn(2)| > A puis [Ppy1(2)| = 2|P,(2)], donc |P,(2)| tend
vers 400 et z n’appartient a Kp. Cela montre en particulier que si z € K,
alors |z| < A. Donc Kp est borné.

Montrons que Kp est fermé. D’apres ce qui précede, z € Kp si, et
seulement si, |P,,(z)| < A pour tout n € N. Soit (zj) une suite d’éléments
de Kp qui converge vers 2. On a, pour (n,k) € N2, |P,(2)| < A. Par

tend vers +oo



116 CHAPITRE 2. COMPACITE, CONVEXITE, CONNEXITE

continuité de P, on en déduit |P,(z)| < A pour tout n. Donc z € Kp.
L’ensemble Kp est un fermé borné donc un compact de C.
4. D’apres la question précédente, C\ Kp = U U,, ou
neN

U, ={z€C, |P,(z)] >A}.

La suite C,, est croissante. Supposons démontré que chaque C,, est
connexe par arcs. Pour = et y dans € C \ Kp, il existe n € N tel que
(z,y) € C%2. Comme C,, est connexe par arcs, il existe un chemin dans
C,, et donc dans C\ Kp de z & y. Ainsi C\ Kp est connexe par arcs.
Pour conclure, il suffit de démontrer le lemme suivant.

Lemme. Pour tout P € R[X], non constant, et tout R > 0, l’ensemble
U={z€C, [P(z)] >R} est connexe par arcs.

Démonstration. Soit zg € U et U(zy) la composante connexe par arcs
de U contenant zg. Comme U est ouvert, il en est de méme de U(z).
Montrons que U(z) n’est pas borné en raisonnant par absurde. Si U(z)
est borné, alors K = U(zg) est compact. Si z appartient & la frontiere
F de U(zp), alors |P(z)] = R. On en déduit que le maximum de |P| sur
K n’est pas atteint en un point de la frontiere, mais en un point z; de
U(zp). Montrons que c’est impossible si P n’est pas constant (c’est le
principe du maximum).

d
En effet, on écrit P = 3" ay(X — 21)¥ et on choisit r > 0 assez petit
k=0
pour que le disque fermé de centre z1 et de rayon r soit inclus dans U(zp).
On a alors

27 27 d
/ IP(21 + re')|?do = Z akéﬁ?“"“/ k=00 49 = 27‘(‘2 lak|?,
0

0<k,0<d 0 k=0

2m
car /0 e*df = 0 si k # 0. On en déduit puisque le maximum de |P|

sur U(zg) est atteint en 21,
d 27
2y ax|* = / [P (21 + re'?)|2d0 < 27|P(21)|? < 27|aol?.
k=0 0

On a donc a = 0 si £ > 1, ce qui impossible car on suppose que P
n’est pas constant. On a donc démontré par I'absurde que U(zp) n’est
pas borné.

Or comme |P(z)| tend vers +oo quand |z| tend vers +oo il existe
R’ > 0 tel que |z| > R’ implique |P(2)] > R, i.e. z € U. Autrement
dit, ’ensemble connexe par arcs {z € C,|z| > R’} est contenu dans U.
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Il est donc contenu dans une de ses composantes connexes par arcs. 11
s’ensuit qu’il existe une seule composante connexe par arcs non bornée,

et finalement U possede une unique composante connexe par arcs puisque
elles sont toutes non bornées. On conclut que U est connexe par arcs. <

Cela termine 'exercice. <

2.31. Injection continue

Existe-t-il une fonction continue et injective de R™ dans R
pour n > 27

(Ecole normale supérieure)

> Solution.

On va montrer qu’il n’existe pas d’injection continue de R™ dans R
lorsque n > 2. 1l suffit bien entendu de la faire pour n = 2, puisque la
restriction d’une injection de R dans R a un plan de R" reste injective et
continue. Supposons donc qu’il existe f : R? — R injective et continue.

Soit S le cercle unité de RZ. Comme S est compact et connexe par arcs
son image f(S) est compacte et connexe par arcs : c’est donc un segment
I = [a,b] de R. Comme S est compact, f réalise alors un homéomorphisme
de S sur I ce qui est absurde, un cercle n’étant pas homéomorphe & un
segment (en dtant un point quelconque d’un cercle on a toujours un
ensemble connexe par arcs, ce qui n’est pas le cas pour un segment).

Plus élémentairement, on peut introduire les antécédents « et 5 de
a et b par f. Le théoréme des valeurs intermédiaires prouve alors que f
atteint toutes les valeurs de ]a, b[ deux fois, une fois pour chaque arc de
cercle délimité par les points « et 5, ce qui contredit I'injectivité de f. <

Dans lexercice suivant on utilisera le fait qu’un ouwvert V conneze
par arcs est connexe, c’est-a-dire qu’il ne peut pas se partitionner en
deux ouverts disjoints non vides. En effet supposons qu’une telle partition
V = V1 UVs soit possible. La fonction f : V — R qui envoie les éléments
de V1 sur —1 et ceux de Vo sur 1 est alors continue car constante sur
un voisinage de chaque point. Prenons x1 € Vi et xo € Vo. Il existe
un chemin continu v : [0,1] — V tel que v(0) = 21 et y(1) = z2. On
aboutit alors & une contradiction en considérant f o~ : [0,1] = R qui
est continue et passe de la valeur —1 a la valeur 1 sans s’annuler, ce

qu’interdit le théoréme des valeurs intermédiaires.
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2.32. Distance a la frontiére

Soit (E, || ||) un espace normé réel de dimension finie, {2 un ouvert
connexe par arcs non vide de E, tel que 2 soit compact. On considere
une fonction continue f : Q —  telle que f(£2) soit ouvert. Montrer
qu’il existe xg € Q tel que d(xg, Q) = d(f(xo), IN) ot IN désigne
la frontiere de €.

(Ecole normale supérieure)

> Solution.

Il nous faut prouver que la fonction ¢ : x — d(z,9Q) — d(f(z),0N)
s’annule sur Q. La fonction = +— d(z,08) est continue sur E car 1-
lipschitzienne. Il en résulte que ¢ est continue sur et comme {2 est
connexe par arcs, il nous suffit de prouver que ¢ prend deux valeurs de
signes opposés.

e Il est facile de trouver un point en lequel ¢ est positive : il suffit
de considérer un point de 'ouvert 2 qui est & distance maximale du
bord. Plus précisément, la fonction continue z +— d(x,9f) atteint son
maximum sur le compact € disons en un point xq. Il est clair que zg €
(car la fonction est nulle sur 0€2). Comme f(zg) € 2 on a d(f(xo),N) <
d(x0,09) donc ¢(xp) > 0.

e [1 est moins facile de montrer que ¢ prend une valeur négative. On
va raisonner par ’absurde et supposer que ¢ reste strictement positive
sur {2, autrement dit que pour tout = € Q, f(x) est strictement plus pres
du bord de © que x. Soit y €  un point adhérent & f(2) et (z,,)n>0 une
suite de points de (2 telle que f(x,,) converge vers y. Par compacité de
on peut, quitte a prendre une sous-suite, supposer que la suite (mn)n;()
converge vers un point ., € Q. Si zo, € Q, alors par continuité de f on
ay = f(zx) € f(Q). Sinon zo € 9N et d(zy, 0Q) tend vers 0. Comme
d(f(zy),00) < d(zy,,00) pour tout n, on en déduit par passage a la
limite que d(y,d) = 0 donc que y € IN ce qui est faux. Ce second cas
est donc exclu. On vient donc de montrer que tout point de €2 adhérent
a f(Q) est dans f(€Q) autrement dit que f(2) est un fermé relatif de
Q ou encore que 2\ f(2) est ouvert. Comme par hypothese f(€2) est
aussi ouvert et non vide et comme (2 est connexe on en déduit (voir la
remarque qui précede Pexercice) que f(Q) = Q i.e. que f est surjective.

En particulier f atteint le point xy défini dans le point précédent
et si x1 € Q est tel que f(x1) = xo on a clairement p(x1) < 0 et la
contradiction avec notre hypothese. <

L’exercice suivant doit étre pris comme un exercice de combinatoire
plus que comme un exercice de topologie.
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2.33. Dénombrement

1. Quel est le nombre maximal de composantes connexes par
arcs du complémentaire de la réunion de n droites de R??

2. Pour n,d dans N* on note ¢(n, d) le nombre maximal de com-
posantes connexes du complémentaire de la réunion de n hyperplans
de R?. Calculer c(n,d).

(Ecole polytechnique)

> Solution.

1. Notons ¢, le nombre cherché. On commence bien entendu par
regarder les petites valeurs de n. Une droite délimite deux demi-plans
ouverts convexes, donc connexes par arcs, et on a ¢; = 2. Prenons deux
droites. Si elles sont paralléles on a seulement 3 composantes connexes,
mais si elles sont sécantes on en a 4. Donc ¢y = 4. Prenons 3 droites :

N\

Si elles sont paralleles toutes les trois, il y a 4 composantes connexes, si
deux des trois droites sont paralleles et la troisieme est sécante aux deux
premieres, il y en a 6, si les trois droites sont sécantes en un méme point
il y en a aussi 6 et sinon il y en a 7. On a donc ¢ = 7.

En fait, ¢, sera le nombre de composantes lorsque les droites sont
en position générale, c’est-a-dire sans que deux des droites ne soient
paralleles ou trois des droites sécantes. On va chercher une relation de
récurrence. Soit n droites délimitant ¢, régions. Ajoutons une droite de
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plus qui est sécante avec les n premieres et qui ne passe pas par un point
d’intersection des n premieres droites. Cette droite rencontre alors n+ 1
composantes connexes qu’elle coupe en deux.

On a donc ¢p41 = ¢, +n + 1. En fait il y a égalité. En effet, soient
n + 1 droites qui délimitent ¢,y composantes. Si on en enleve une il
reste au moins ¢, 11 —n — 1 composantes donc ¢, 11 —n—1<¢,. On a

2

alors immédiatement ¢, =n+(n—1)+---+2+4¢; = nAnt2

2. On va encore chercher une relation de récurrence en admettant
que le nombre maximal de composantes est obtenu pour des hyperplans
en position générale (bien qu’intuitive cette notion ne se définit pas si
facilement que cela...). Considérons n hyperplans Hy,...,H, de R? en
position générale. Il en est de méme des n — 1 hyperplans Hy, ..., H,,_
qui délimitent donc ¢(n — 1, d) régions. L’hyperplan H,, n’est parallele a
aucun des H; et les sous-espaces affines Fi, = H,NH pour 1 <k <n—-1
sont des hyperplans affines de H,, en position générale qui délimitent
c¢(n—1,d—1) régions. Ces régions sont les traces sur H,, des composantes
connexes de Rd\ U Hj, qui sont coupées en deux par H,,. On a donc

1<k<n—1

e(n,d)=c(n—1,d) +e(n—1,d—1).

Il est alors possible de donner une expression explicite de ¢(n,d) en
utilisant les coefficients binomiaux. En effet, on a vu dans la question
nin—1)

5 +n+1= C%+CL+C2. Montrons par

précédente que c(n,2) =

d
récurrence sur d que ¢(n,d) = Y. Ck. L’initialisation est vue. Supposons
k=0
que cela est vrai en dimension d — 1. Pour prouver que c’est vrai en

dimension d on procéde par récurrence sur n. On a ¢(0,d) = 1 et la
formule est correcte avec la convention CX¥ = 0 pour k > n. Si la formule
est vraie aurang n — 1 on a

d d—1
en,d) = cn—1,d)+c(n—1,d-—1)=> Ci_ +> CI_,
k=0 k=0
d d
= 1+ > (CE+cih=> ¢k
k=1 k=0

en vertu de la formule de Pascal. <
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2.34. Connexité d’un cone

Soit p et ¢ deux entiers > 2 et X le sous-ensemble de RP'?
d’équation
x%_~_...+$§:y%+...+y§_

1. Etudier la connexité par arcs de X.
2. Méme question pour X \ {0}. (Ecole normale supérieure)

> Solution.
1. L’ensemble X est le cone isotrope de la forme quadratique ¢ :

(Z1, ooy Ty Y1y ey Yg) > TF + o+ xf, —yd - = yg. Il est bien entendu
connexe par arcs puisque tout point de ce cOne est relié au sommet
(0,...,0) par un segment.

2. L’ensemble X\ {0} reste connexe par arcs. En effet, prenons deux
points M = (a1, ..., ap, b1,...,0q) et N = (c1,...,¢p, d1, ..., dq) dans cet en-
semble. Toute la demi-droite {tN, ¢t > 0} est incluse dans X \ {0} donc,
quitte a remplacer N par un point de cette demi-droite on peut sup-
poser que ¢f + --- + ¢ = ai + --- 4 a2. On a alors nécessairement
di +---+d2 = b +--- + b2 On utilise maintenant le fait qu’en
dimension n > 2 les spheres de R™ sont connexes par arcs. Il est
possible de trouver ¢ : [0,1] — RP et ¢ : [0,1] — R? continues
telles que ¢(0) = (a1,...,ap), ©(1) = (c1,...,¢p), P(0) = (b1, ..., bq) et
¥(1) = (d1,...,dq) et ot ¢ (resp. ¢) prend ses valeurs dans la sphere

de centre lorigine et de rayon y/af +--- + a2 (resp. /bf +--- +b2). Le

chemin continu t — (p(t), 1 (t)) est alors & valeurs dans X\ {0} et permet
de joindre M a N. <

Le lecteur trouvera des exercices sur la connexité par arcs dans des
espaces de matrices dans les tomes algebre 2 (exercice 3.1, 4.18 et 4.19 )
et algébre 3 (exercice 1.85 sur la connexité de SO, (R), exercice 3.23 sur
les composantes connezes de ’ensemble des matrices symétriques réelles
définies positives).






Chapitre 3

Espaces de Banach, espaces de Hilbert

Rappelons que, si (E,||,||) est un espace vectoriel normé, une suite
(@n)ns0 de E est dite de Cauchy lorsqu’elle vérifie :

Ve>0,INeN,Vn =N, Vp >N, ||z, —z,| <e.

Une suite qui converge est de Cauchy et lorsque la réciproque est vraie,
c’est-a-dire lorsque toute suite de Cauchy de E converge, on dit que E est
complet ou qu’il s’agit d’un espace de Banach (en U’honneur de Stefan
Banach (1892-1945) l'un des péres de I’Analyse Fonctionnelle).

Les premiers exercices donnent des eremples importants d’espaces
complets.

3.1. Espace des fonctions continues sur un segment

Soit E = C°([0, 1], R).
1. Montrer que E est complet pour la norme de la convergence
uniforme.

1
2. Est-il complet pour la norme || ||; définie par ||f|; = /0 |f]?

(Ecole polytechnique)

> Solution.

1. Soit (fn)n>0 une suite de Cauchy de E pour la norme || ||o. Soit
z € [0, 1]. Pour tout couple (n,p) € N%, ona |f,,(z)— fo(z)] < ||fa—folloo
donc la suite réelle (fy,(x))n>0 est de Cauchy. Comme R est complet elle
converge vers une limite que ’on note f(x). On va montrer que la fonction
f ainsi définie est continue et que la suite (f,,)n>0 converge uniformément
vers f sur [0,1]. Soit £ > 0. On peut trouver N tel que pour tous n > N,
p = N, on ait ||f,, — fplleo < € et donc |f(z) — fp(z)] < € pour tout
x € [0,1]. Dans cette inégalité on fait tendre p vers 'infini. Pour n > N et
x € [0,1] on a donc |f(x) — f(x)] < €. Cela prouve que la suite (fn)n>0
converge uniformément vers f sur [0,1]. Le théoréme de continuité des
limites uniformes permet d’en déduire que f est continue et appartient
donc a E.

Conclusion. L’espace vectoriel normé (CO([0, 1], R), || |leo) est com-
plet.

123
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2. Nous allons montrer en revanche que E n’est pas complet pour la
norme || ||;. Pour cela, considérons pour tout n > 2 la fonction f, de E

. 1 1 1
affine par morceaux qui est nulle sur [O, 5 ﬁ} et vaut 1 sur [5 , 1}.

Voici le graphe de cette fonction :

A

1

0
. . 1 1
Soit n > 2 et p > 0. La fonction f,4, — f, est nulle sur {0757—}
n

et sur 11.Su1r 111 on a | frip — fn| <1 de sorte que
27 2 n’ 2 n+p nl X

1 5 1
||fn+p_fn||1 :/O |fn+p_fn| <é %dt: H

. . 1
Soit € > 0. Comme lim = =0, 0on a ||frtp — foll1 < e pour n assez
n—+4+oco N

grand et p > 0 quelconque. La suite (fy)n>2 est de Cauchy.
Montrons maintenant, en raisonnant par I’absurde, qu’elle ne
converge pas. Supposons que (fy,)n>2 converge vers f € E pour la norme

1
— — pour n assez grand et alors
n

[ll1. Prenons a € {O 1 { Onaa< %

T2

[1s= [ 18 = sl <17 =l —

«
Donc / |f| = 0 et comme f est continue, f s’annule sur [0, . Le réel «

étant quelconque dans

1 1 A~
0, 3 {7 f est nulle sur {07 5 [ On montre de méme
que f est constante égale a 1 sur ,1]. On tient notre contradiction

puisque f n’est pas continue en - - Donc la suite (fy,),>2 diverge et

N~
N

Pespace vectoriel normé (E, || ||1) n’est pas complet. <

La démarche de la question 1 est trés importante et doit étre bien
maitrisée. L’énoncé suivant en propose une variante avec un espace de
suites.
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3.2. Espace des suites bornées

Soit E le R-espace vectoriel des suites réelles bornées, que ’on
munit de la norme || || définie par ||u|| = sup |u,| pour u € E.
neN

1. Montrer que E est complet.
2. Existe-t-il une partie dénombrable dense dans E 7
(Ecole polytechnique)

> Solution.

1. Soit (u*)gen une suite d’éléments de E (I'indice est placé en haut),
le terme général de la suite u* étant noté u* pour tout n € N. On suppose
que la suite (u*)gen est de Cauchy. Soit € > 0. Il existe kg € N tel que
pour tous 4,5 > ko, on ait [|Ju’ —u?| < e.

En particulier, pour n fixé, on a |ul, — ul| < € des que 4,5 > ko.
Comme ¢ est arbitraire, on en déduit que la suite réelle (uk)iey est de
Cauchy. Comme R est complet, elle converge. On note ¢,, sa limite et ¢
la suite de terme général /,,.

On va montrer que ¢ est une suite bornée (donc un élément de E)
et que u* converge vers £ au sens de la norme || ||. Soit ¢ > 0 et kg
comme ci-dessus. On a alors |ul, — ul| < & pour 4,5 > ko et pour tout
n. En faisant tendre j vers +oo on obtient |ul, — ¢,,| < & pour i > ko

et n quelconque. On en déduit que sup |u!, — £,| < e. La suite u® — ¢
neN

est bornée, c’est-a-dire appartient & E, et vérifie ||u’ — ¢|| < e. Comme
u’ est dans E, on en déduit que ¢ appartient a E. D’autre part, on a,
pour tout i > ko, ||u’ — ¢|| < . Comme ¢ est un réel strictement positif
quelconque, on conclut que la suite (u*)zen converge vers £ et donc que
E est complet.

2. La réponse est négative. Démontrons-le en raisonnant par I’ab-
surde. Supposons qu’il existe une partie dénombrable D qui est dense
dans E et posons D = {u*, k € N}. 1l est facile de construire une suite
bornée * = (z,)n>0 telle que ||z —uF|| > 1 pour tout k. En effet, il suffit
d’utiliser le k-ieme terme de la suite z pour rendre écart entre x et u®
plus grand que 1. On pose par exemple z = —1 si uz 2 0etzp=1si
uf < 0. On a ||z]| =1 et pour tout entier k,

lz = u¥[| > far — ui] > 1.

Cela contredit la densité de D. <

Un espace normé qui contient une partie dénombrable dense est dit
séparable. C’est le cas des espaces de dimension finie (ce qui découle en
gros de ce que Q" est dense dans R™) mais aussi de la plupart des espaces
utilisés en Analyse Fonctionnelle, le cas des suites bornées de ’exercice
étant un des rares contre-exemples.
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Notons aussi que le sous-espace ¢ (resp. cg) formé des suites conver-
gentes (resp. des suites qui convergent vers 0) est fermé dans E donc est
aussi complet pour la norme |||

Voici encore une wvariante avec des séries. L’exercice contient
également une question de compacité qui demande de mettre en ccuvre
un procédé d’extraction diagonal.

3.3. Espace ¢!(N)

Soit E = {u € RN, Y |u,| converge} que I'on munit de la norme
+oo
||| définie par ||u|| = > |un| pour u € E.

n—
1. Montrer que E es(’)c complet.
2. Siwu et v sont dans E, on pose u < v si u,, < v, pour tout n.
Une suite croissante et majorée de E pour 'ordre < converge-t-elle ?
3. Soient a et b dans E, avec a < bet X ={z € E, a < z < b}.
Montrer que X est compact.

(Ecole polytechnique)

> Solution.
1. Donnons-nous une suite de Cauchy (u?)pen de E. Par définition,
on a donc

V€>07 HPO GNv Vp>p0a vQ?I’Oa Hupiuq” <e. (*)
En particulier, si n € N est fixé, on a
Ve >0, 3po €N, Vp = po, Vg = po, |uf, —ul| <

ce qui signifie que la suite (u?),en est une suite de Cauchy. Comme R
est complet, cette suite converge vers un réel que nous noterons £,,. Nous
allons montrer que la suite £ = (¢,,)nen est dans E et que la suite (u?)pen
converge vers ¢ au sens de la norme || ||.

Soit € > 0 et N > 0. D’apres (x), il existe po € N tel que pour p > pg

et ¢ = po, Z [ul —ul| < € et, a fortiori, Z |uP — ul| < e. Faisons
tendre q vers 1 infini dans cette derniere megahte Pour tout p > pg, on
a Z |ub — £, | < e. Cette inégalité étant valable pour tout N > 0, on en

400
déduit que la série > |uf, — £, | converge et que Y |ub —{¢,| <e¢
n=0



3.3. ESPACE /1 (N) 127

11 s’ensuit que u? — ¢ est dans E (pour p > po) et, comme E est un
sous-espace vectoriel de RN, ¢/ = u? — (uP — /) est bien dans E. Nous
venons de démontrer que si € > 0, il existe py € N tel que si p > pg, on
a ||uP —¢|| < e. Cela prouve que la suite (u”)pen converge vers £ dans E.

Conclusion. E est un espace de Banach.

2. Soit (uP)pen une suite croissante de E, majorée par une suite v de
E. Pour tout p € N, on a uP < uPT! < v et donc ub < ufﬂ‘l < v, pour
tout entier n € N. A n fixé, la suite (uP)pen est donc une suite croissante
majorée de R, qui converge vers un réel que nous noterons ¢,. Posons
alors £ = (L) nen-

Montrons que ¢ est dans E. Soit p € N. Comme u? < £, < v,
pour tout n, on a |ul — £,| < |ub — v,| < |[uB| 4 |v,]| et le théoreme de
comparaison des séries & termes positifs assure que Y |uf, —£,,| converge.
Donc uP — / est dans E et E étant un sous-espace de RY, ¢ € E.

Montrons enfin que (u?),en converge vers £. Soit € > 0. Comme a n
fixé, u? < uP < £, pour tout p, on a |uf, — £, | < |ud —£,,|. Il existe N > 0

00 N
tel que +Z [u —£,] < % D’autre part, la somme finie Y |uP — 4,
n=N+1 n=0
tend vers 0 puisque pEToo u? = {,, pour tout n. Il existe pg tel que

N ™

N
Vp=po, Y |ub — o] <
n=0
Par conséquent, pour tout p > pg on a
= e €
S jub — ] < §+§ =c et |uP—{|<e.
n=0

Conclusion. La suite (u”),>( converge vers u.

3. Soit (uP)p>0 une suite de X. Il s’agit de montrer qu’on peut en
extraire une sous-suite qui converge vers un point de X.

Pour tout p € N et tout n € N, on a a, < ul < by. An fixé, la
suite (u?)pen est donc bornée. Elle est donc justiciable du théoreme de
Bolzano-Weierstrass. On congoit bien que 1’on peut faire une extraction
an=0, puis an=1,n=2,... et ce, une infinité de fois. Plus rigoureu-
sement, il s’agit de mettre en place un procédé diagonal. )

©o(p

Soit ¢o : N — N strictement croissante telle que (uf®"’)pen

converge dans R vers un réel £y. Comme (uf°®)), ¢y est bornée, il existe

©1 : N — N strictement croissante telle que (ufo(wl(p)))peN converge

dans R vers un réel ¢;. On réitere le procédé. Au rang n, comme
(uﬁi(fl('”%(p)'“))pel\; est bornée, il existe pnp4+1 : N — N strictement

croissante telle que (uii(l'"ip"(‘p”“(p))"'))

réel £, 41.

peN converge dans R vers un
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On a donc une infinité de fonctions ¢, : N — N strictement crois-
santes. Posons, pour p entier naturel, ¥)(p) = wo(¢1(...(pp(p)))). Alors
1 : N — N est une application strictement croissante. En effet, on a
@pr1(p+1) = p+1>p, donc

©o(- - pp(ppr1(p+1))) > @ol...pp(p)) ie Y(p+1)>1(p)

puisque g o --- o @, est strictement croissante. De plus, si p > n, on a

kp = @ny10---0p,(p) = p donc lir_sr_l kp = 400, et par composition des
p—+0o0

limites

ul®) — 2ol (on (k) . 0.
p—r—+oo

Faisons le bilan : on a construit ¥ : N — N strictement croissante

telle que pour tout n € N, uy, Y®) tend vers L, € [an,by] lorsque p tend
vers l'infini. Soit ¢ = (¢,,)nen. Il nous reste a prouver que ¢ € E et que
u¥®) converge vers ¢ dans E. A n fixé, lan, — £n] < by — a,. Comme
b—a € E, le théoréeme de comparaison des séries a termes positifs assure

que a — £ € E et finalement £ € E puisque E est un sous-espace.
—+00
Soit € > 0. Il existe N > 0 tel que > (b, —an) < % Comme,
n=N+1

N
Z\uﬁ(p)—f | —— 0,

p—r—+oo

pour p assez grand, on a Z |u¢(p — | < % Ainsi, pour p assez grand,
n=0
E €
u?® — ¢ < Z lul® — ¢, + Z —a,) < 5Tg=¢
n=0 n=N+1

ce qui traduit lim u¥® =¢.
p—+o0

Conclusion. L’ensemble X est compact. <

Avec le résultat de l'exercice 2.10 il est facile de donner une ca-
ractérisation des parties compactes de €' : ce sont les parties X qui sont
fermées, bornées et équisommables, c’est-a-dire telles que

—+oo
Ve>0, INeN, YueX, > |uy|<e
n=N

1l est aisé de voir que l'exemple de ’exercice vérifie ces conditions.
L’ezxercice suivant ressemble au précédent mais il est plus facile. Sans

étre centré sur la complétude, il permet de tester le candidat sur l’en-
semble du cours de topologie.
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3.4. Espace des polynomes

P(k)
Soit E = R[X]. On pose pour P € E, N(P Z = |
1. Montrer que N est une norme sur E.
n_ ok
2. On pose P, (X) = Z =k Montrer que la suite (P,),>1 est
k=1

de Cauchy dans E. Converge-t-elle 7

3. La dérivation de E est-elle continue ?

4. On pose pour P € E, 9,,(P) = P (0). Montrer que 1, est
une forme linéaire continue et calculer sa norme.

5. On dit que P précede Q, ce que I'on note P < Q, lorsque pour
tout entier n, P(™(0) < Q™ (0). Soient P et Q fixés. On pose,

G={ReE,R<P} H={ReE, Q=<R}

Montrer que G et H sont des fermés de E et que leur intersection
est compacte.
(Ecole polytechnique)

> Solution.

1. On remarque que la somme qui intervient dans la définition de
N(P) est finie, pour tout polynéme P : il s’agit simplement de la somme
des valeurs absolues des coefficients de P. On en déduit facilement que

N est une norme. .
n

2. Powrl<m<n,onaP, -P,= > =
k:m—i—lk

et par conséquent

n 1 . . 1, . .
NP, -P,) = = La série > = étant convergente, il existe,
k=m+1

too 4
pour tout € > 0, un entier N tel que > = < e. Pour n,m > N, on a

k=N
N(P,, — P,) < ¢ et la suite (P,),>1 est donc de Cauchy.

Montrons qu’elle ne converge pas. Raisonnons par I’absurde et sup-
posons qu’elle converge vers un polynoéme P de degré d et considérons
x*
un entier n > d. Pour d < k < n le terme de degré k de P,, — P est F-
n

On en déduit que N(P,, — P) > k:Xd:H % > (dil)Q - C’est absurde car

N(P,, — P) converge vers 0.

Conclusion. La suite (P,),>1 est de Cauchy, mais elle ne converge
pas. L’espace (E,N) n’est pas complet.

3. Montrons que la dérivation n’est pas continue. On a, pour tout
n € N*, N(X") = 1 et N((X")') = N(nX""!) = n. On en déduit que
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N(X™)) N(P) . Lo
N n. Le rapport N(P) n’est pas borné quand P décrit E\ {0}.

La dérivation est linéaire, mais n’est pas continue.
4. Soit n € N un entier fixé. L’application 1, est clairement linéaire.
Montrons qu’elle est continue. Pour tout P € E, on a

[Pt (0)]
!

[¥n(P)] = [P (0)] = n! < nIN(P),

par définition de N. On en déduit que % est continue et que

|vn (P)]
Y[|= sup —— < nl
Il per\{0} N(P)

|¢on (P)]
N(P)
égalité : ||¢] = n!.

5. Montrons que G est fermé. La démonstration est identique pour
H. Soit (Rg)ren une suite & valeurs dans G qui converge vers R € E. Tl
faut montrer que R est dans G. Pour tout (n, k) € N2, on a

Le rapport vaut n! pour P = X" donc la majoration est une

IR (0) = R{V(0)] < nIN(R — Ry).

On en déduit que la suite (R,(Cn) (0))ren converge vers R(™(0), pour tout
n € N. Sachant que, pour tout k£ € N, R;Cn)(O) > P(™)(0), on obtient

R™(0) = Tim Ry"(0) > P(0).

Cela étant vrai pour tout n € N, R est dans G et G est fermé.

Montrons que K = GNH est compact. Soit d = max(deg P, deg Q) et
R € K. On a, pour tout n € N, P(™(0) < R™(0) < Q™ (0). Si n > d,
alors P(™(0) = Q™ (0) = 0 et donc R(™(0) = 0. Donc K est inclus dans
Rg4[X]. Or K est fermé dans E, car ¢’est l'intersection des deux fermés G
et H, donc a fortiori, il est fermé dans Ry[X].

Montrons qu’il est borné. Si R € K et n < d, alors P (0) <
R™(0) < Q™ (0) et donc |R™(0)| < max(|P™(0)],]Q™(0)]). On en
déduit que

i max([P™ (0)], |Q™ (0)])

N(R) < o

k=0
Le terme de droite étant une constante, cela montre que K est borné.
Donc K est un fermé borné de R,4[X], qui est un espace vectoriel de
dimension finie. Quelle que soit la norme choisie, et en particulier pour
la norme N, les fermés bornés de Ry[X] sont compact. Donc K est un
compact de Ry[X] et a fortiori un compact de E. <



3.5. ESPACE DES FONCTIONS LIPSCHITZIENNES 131

3.5. Espace des fonctions lipschitziennes

Soit E I’ensemble des fonctions lipschitziennes de [0, 1] dans R.

1. Montrer que E est un espace vectoriel.

2. Est-il complet pour la norme || ||oo ?

3. Si f € E, on note K(f) la borne inférieure des constantes de
Lipschitz pour f. S’agit-il d’une norme sur E?

4. Vérifier que 'application N : f +— K(f)+]f(0)| est une norme
sur E. Est-elle équivalente & || ||oo ?

5. L’espace (E,N) est-il complet ?

(Ecole polytechnique)

> Solution.

1. La fonction nulle est lipschitzienne et si f € E est K-lipschitzienne
et g € E est K'-lipschitzienne, il est aisé de voir, & I'aide de 'inégalité
triangulaire, que pour (A, 1) € R? la fonction A f+pg est lipschitzienne de
rapport |A|K+|u| K'. Donc E est un sous-espace vectoriel de F([0, 1], R).

2. L’espace E n’est pas fermé dans (C°([0,1],R),| |le) donc n’est
pas complet. En effet, E contient clairement le sous-espace des fonctions
polynoémes de [0,1] dans R. Soit f une fonction continue non lipschit-
zienne, comme par exemple x — /x. Par le théoréme de Weierstrass, on
sait qu’il existe une suite de fonctions polynémes (Py,),>0 qui converge
uniformément vers f sur [0, 1]. Cette suite est une suite de Cauchy de E
mais elle ne converge pas dans E.

3. D’apres la question 1, on a K(f + g) < K(f) + K(g) pour tout
couple (f,g) € E2. 1l est aussi facile de voir que K(\f) = |M\K(f) pour
A € Ret f € E. En revanche, 'axiome de séparation n’est pas rempli : si
K(f) = 0, on peut seulement dire que f est constante. Donc f — K(f)
est une semi-norme mais n’est pas une norme sur E.

4. De ce qui précede, il résulte que N vérifie 'inégalité triangulaire
et est homogene. De plus, si N(f) = 0, on a f constante et f(0) = 0,
donc f nulle. Ainsi N est bien une norme sur E. Pour f € E et € [0,1]
on a |f(z) — F(0)] < K(f)e < K(f) done |f(x)] < K(f)+ |£(0)] = N(f).
Par suite || f]lco < N(f) pour toute fonction f de E.

En revanche il n’est pas possible de controler N(f) a l'aide de la
norme infinie de f. Considérons f,, : © — sinnx pour n > 1. Il s’agit
clairement d’une fonction de E. Comme f/, : z — ncosnz la fonction
fn est n-lipschitzienne par le théoreme des accroissements finis. En fait,

. sin nx
comme le taux d’accroissement ——— tend vers n lorsque x tend vers 07,

xT
on a K(f,) =n et donc N(f,) = n. Mais || fn]loc = 1 pour tout n. Cela
prouve que les normes N et || ||« ne sont pas équivalentes.
5. Soit (fn)n>0 une suite de Cauchy pour la norme N. Comme
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[Iloo < N d’apres la question précédente, la suite (f,)n>0 est aussi de
Cauchy pour la norme infinie. Or on sait que I'espace C°([0,1], || |/o0)
est complet (voir l'exercice 3.1). La suite (fy,)n>0 converge donc uni-
formément sur [0,1] vers une fonction continue f. On va montrer que
f € E puis que (fn)n>0 converge vers f au sens de N. Comme on a
K(f)~K(f)| < K(fa f) < N(f—1,) pour tout (n,p) € N2, la suite
(K(fn))n>o0 est de Cauchy dans R. Elle converge donc vers un réel posi-
tif K. Pour (z,y) € [0,1]> et n € N, on a | f,,(z) — fu(y)| <K(fn)|z -yl
En faisant tendre n vers Uinfini, on en déduit que |f(z)— f(y)| < K|z—y|.
Donc f est K-lipschitzienne. Montrons pour finir que N(f,, — f) tend
vers 0. Comme f,(0) tend vers f(0) il suffit de prouver que K(f, — f)
tend vers 0. Soit € > 0. Par hypothese on peut trouver un rang N tel que
K(fn — fp) < e lorsque n et p = N. Pour n et p > N, z et y dans [0, 1],
on a donc |fn(y) — fp(y) — fn(x) + fp(z)| < elz —y|. En faisant tendre
p vers Uinfini, on obtient

vn >N, Y(z,y) € 0,1, [faly) — f(y) — fo(@) + f(2)] < ez —y].

Donc pour tout n = N, on a K(f,, — f) < & ce qui prouve le résultat. <

L’étude des espaces métriques généraux n’étant plus au programme
des classes préparatoires nous avons écarté les énoncés les plus anciens
qui concernent cette notion. Certains espaces fonctionnels ont toutefois
des topologies naturelles qui ne découlent pas forcément d’une norme.
C’est par exemple le cas de Uespace des fonctions continues sur un ou-
vert Q0 de R™, lorsqu’on s’intéresse a la convergence uniforme sur tous
les compacts de Q. L’énoncé suivant montre, dans le cas de R2, que
cette notion de convergence est donnée par une distance, et que l’espace
métrique ainsi obtenu est complet.

Rappelons qu’une distance sur un ensemble E est une application
de E? dans Ry notée (x,y) — d(z,y) telle que

(i) V(x,y) € B, d(x,y) =0 =2 =1y

(”) V(x,y) € E27 d(as,y) = d(y’ .Z‘) ;

(ii1) V(2,y,2) € B, d(x,z) < d(z,y) + d(y, 2).
On dit alors que (E,d) est un espace métrique.

Pour aborder lezercice, la seule chose a savoir est la définition d’une
suite de Cauchy d’un espace métrique (E,d) : c’est une suite (Tn)n>0
telle que pour tout € > 0 il existe N tel que d(x,, z,) < € lorsquen,p > N.
L’espace E est complet lorsque toutes les suites de Cauchy convergent.



3.6. CONVERGENCE COMPACTE 133

3.6. Convergence compacte

Soit E = CY(R?,R) l'espace vectoriel des fonctions continues de

R? dans R. Pour n € N, on note D,, = {(z,y) € R? 22 + y? < n} et

pour f € E, v,(f) = sup |f(x)|. Enfin, pour f et g dans E, on pose
€D,

= 1 Vn(f_g)

d(f’g):n=0271+yn(.f_g).

Montrer que d est une distance sur E, pour laquelle E est complet.
(Ecole polytechnique)

> Solution.
Montrons tout d’abord que d est une distance(. )
5 1 vn(f—g 1 .

' om m < on qui est
le terme général d’une série convergente. D’apres le théoréme de compa-
raison des séries a termes positifs, la série qui définit d(f,g) converge. Il
est clair que d est a valeurs positives.

e Montrons que d est séparatrice : soit (f,g) € E? tel que d(f,g) = 0.
Alors, pour tout n > 0,

1 vnl(f —9)
2t 1+ va(f —9)

Il s’en suit que f — g est nulle sur D,, pour tout n et finalement nulle sur
R? tout entier. On a donc f = g et la réciproque est immédiate.

e d est clairement symétrique : si (f,g) € E2, d(f, g) = d(g, f).

e Montrons que d vérifie I'inégalité triangulaire : soit (f, g, h) € E3.
De la croissance sur R de ’application x —

o d est bien définie car si (f,g9) € E

=0et v,(f—g)=0.

a: - et de I'inégalité

u-+v U i v
14+u4+ov 14+u 140

valable pour u et v positifs, on déduit

Vn(f_h) < Vn(f_g)+yn(g_h) < Vn(f_g) Vn(g_h)

Ltva(f=h) " T4wa(f—g) +valg—h) = L+wa(f—g) 1+valg—h)
En divisant par 2™ et en sommant sur n € N, on obtient
d(f,h) < d(f,g) +d(g,h).

Montrons maintenant que (E,d) est un espace complet. Rappelons
le résultat essentiel suivant : si K est un compact, C(K,R) muni de la
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norme uniforme est un espace de Banach (voir 'exercice 3.1 pour le cas
K =[0,1]; la démonstration est identique dans le cas général ).
Soit (fx)k>0 une suite de Cauchy de E. On a donc

Ve >0, dkg € N, VE > ko, Vp €N, d(fkvfk+p) <e

soit encore

+oo
1w (fy—
Vs>0,3koeN,Vk>ko,VpeN,< vn(fr f’“*”))<e>.

=2 T4 vn(fi — frrp

En particulier, pour n € N et n > 0 donnés, on peut trouver ky entier
naturel tel que pour tout k > kg et tout p > 0

Un(fie = frap)
L+ vn(fi — frtp)

On désire controler vy, (fr — fr+p) = uw et on contréle t = HLU Cette

T La fonction t — T
donc si e > 0 est donné, on peut choisir > 0 tel que pour tout 0 < ¢t < 7,
t

1—-1t
on a vp(fk — fe+p) = ”fk\D,,, — fk+P|DnHOO < e pour tout k > kg et tout
p 2 0. On vient donc de prouver que la suite (fk|Dn)k>0 est une suite
de Cauchy de C°(D,,, R). Comme D,, est compact, (C°(D,,,R),v,) est un
espace de Banach : il existe donc une fonction continue g, : D, — R
vers laquelle la suite fi|p, converge uniformément. Cela vaut pour tout

relation équivaut a u = est continue en 0,

< ¢e. Par conséquent, si kg est un entier associé a cette valeur de 7,

entier n donc la suite (fj) converge simplement sur R? vers un fonction g
telle que g|p, = gn pour tout n > 0 (par unicité de la limite, la fonction
Jgn+1 est un prolongement de gy,).

Pour tout n € N, la fonction g est limite uniforme sur D,, de la suite
de fonctions continues f;, donc est continue sur D,,. Ainsi g est continue
sur R?, donc g € E. 1l reste & montrer que (fi)r>0 converge vers g pour

+ o0
la distance d. Soit € > 0. Il existe N € N tel que > 2% < e. D’autre
n=N+1

part, par hypothese, il existe ky > 0 tel que

1 vn(fr = frep)
2" 1+ vn(fi = futp)

Sur (CO(DWR), Vn), lapplication v, est continue. Par conséquent
pEI-Poo Un(fie = frtp) = Un(f — gn) = vn(fr — g). En faisant tendre p

vers I'infini, il s’ensuit que, pour k > ko,

N i Vn(fk - g)
n—0 2m 1+ Vn(fk - g)

N
Vk > ko, VpEN, Y <e.
n=0

<e.
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Comme pour tout n € N, 2% % < 2%, on obtient, pour
k 2 kO?
+oo N “+o00o
1 I/n(fk VUn fk ) 1
d(fr,q9) = —_— —_— — < 2e.
(f1:9) = 2n1+yn<fk_ <X vt DT

Il en résulte que (fr)k>0 converge vers f pour la distance d.
Conclusion. L’espace (E,d) est un espace métrique complet. <
Pour préciser la remarque qui précéde l’exercice montrons qu’il

n'existe pas de morme sur E qui définit la méme topologie que d.

Supposons par l'absurde qu’une telle norme eziste et notons B sa boule

unité ouverte. Par hypothése, cette boule est ouverte pour la topologie

définie par d donc il existe r > 0 tel que {f € E, d(0,f) < r} C B.
+oo
Choisissons N tel que Y ok
k=N-+1
Dy wvérifie d(0, f) < r donc est dans B. Mais c’est absurde car si f est
une telle fonction non nulle (et il en existe), alors \f € B pour tout

réel \.

< r. Toute fonction f qui est nulle sur

Voici un exercice un peu plus géométrique qui donne une ca-
ractérisation, certes anecdotique, des boules ouvertes d’un espace de
Banach

3.7. Une caractérisation des boules ouvertes d’un Banach

Soit E un espace de Banach, et {2 un ouvert borné non vide de E.
On suppose que pour tout (z,y) € Q2, il existe une boule B contenue
dans 2 et contenant = et y. Montrer que {2 est une boule ouverte.

(Ecole polytechnique)

> Solution.

Soit d = sup ||z — y|| le diametre de Q. C’est un nombre réel,
(z,y)€Q?

puisque € est supposé borné. Pour tout n > 1, il existe (z,,,y,) € Q2
tel que ||z, — ynl|| = d — l Il existe par hypothése une boule B, de
centre z, et de rayon 7, > 0 contenant x,, et y, et incluse dans 2. On
peut supposer qu’il s’agit d’'une boule fermée quitte a prendre un rayon
un peu plus petit.

On va montrer que la suite (2,,)n>1 converge. Pour cela on va vérifier
qu’il s’agit d’une suite de Cauchy et exploiter la complétude de E. Soit
n < m deux entiers. Supposons z, # zp,.
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Les points a et b étant définis sur la figure ci-dessus, on a
d2lla—0bl = |la—znll + 20 = 2m | + |2m = bll = |20 — 2l + 70 + T

1 .
Or, 2r, = ||2n — ynl| = d — — car Ip et y, sont dans B,,. On obtient

donc
1 1 1
+ < —

lzn = 2mll < 2n  2m  n
Cette inégalité demeure évidemment valable si z, = z,,. Il en résulte
que la suite (zy,),>1 est une suite de Cauchy. Comme E est complet, elle
converge et on note z sa limite. Il semble naturel de conjecturer que €2

est la boule ouverte B(z, g)

Soit x un point de B(z, g) Posons 7 = g —||z—=z|| > 0. On a, pour
tout n € N*|
1 d 1
[ = znll <llz =zl + 1z =zl < llz =2+~ =5 =0+ —
n 2 n

d 1 3 N .
Comme - <7+ ——,ona |z — 2z, <r,—n+ 5, ¢t & partir d’un
n mn
certain rang ||z — z,| < r,. Donc z est dans B,, pour n assez grand et

en particulier € €. On a donc une premieére inclusion : B(z, g) c Q.

Comme le diamétre de Q est égal & d, on a Q C B(z, g) Enfin,

étant ouvert, on a nécessairement 2 = B(z, ﬁ) <

Notons que le résultat n’est plus vrai si on enléve I’hypothése Q) borné :
par exemple si E est un plan euclidien, un demi-plan ouvert fournit un
contre-exemple.

Le résultat de l'exercice suivant est en revanche fondamental et le
lecteur en aura déja rencontré une application dans l’exercice 1.10.



3.8. PROLONGEMENT DES APPLICATIONS UNIFORMEMENT CONTINUES 137

3.8. Prolongement des applications uniformément continues

Soit E et F deux espaces vectoriels normés, A une partie de E et
f: A — F. On suppose A dense dans E, f uniformément continue
et F complet. Montrer que f admet un unique prolongement continu
f a E tout entier.
(Ecole polytechnique)

> Solution.

o Unicité. Soit f répondant au probleme et x € E. Prenons une suite
(an)nen de A qui converge vers x (c’est possible car A est dense dans E).
Alors, par continuité de f,

fa)= tm_ fla,) = lm_f(a,)
et par unicité de la limite, f (x) est uniquement déterminé.

e Eristence. Soit x dans E. Comme A est dense dans E, on peut
prendre une suite (a,)nen de A qui converge vers x. Montrons que la
suite (f(an))nen converge. Pour cela, il suffit de vérifier qu’elle est de
Cauchy puisque F est complet. Soit € > 0 et 7 > 0 un module d’uniforme
continuité de f pour €. Comme (ay,),en converge, elle est de Cauchy. 11
existe donc un rang ng tel que si n = ng et m = ng, ||a, — am|| < n et
il s’ensuit que || f(an) — f(am)|| < e. Autrement dit, la suite (f(an))nen
est de Cauchy, donc converge vers une limite £.

Montrons que cette limite ne dépend pas du choix de la suite (ap,)nen
convergente vers x choisie. Soit (b, )nen une autre suite de A qui converge
vers . Soit € > 0 et n > 0 le module d’uniforme continuité associé. Pour
n assez grand, ||a, — byl < 7 et donc || f(an) — f(bn)|| < . Il S’ensuit
que ngrfoof(an) — f(bn) =0 et (f(bn))nen converge aussi vers £.

On prend naturellement pour f(z) la limite de la suite (f(an))nen.
Clairement f prolonge f & E (pour z € A on peut prendre la suite
constante a,, = x pour tout n).

Montrons pour finir que f est continue. En fait, on va méme prouver
que f est uniformément continue. Soit € > 0. Il existe par hypothese
n > 0 tel que si (z,y) € A%, avec ||z — y|| < n, alors | f(z) — f(y)|| <e.
Soit = et y dans E tels que ||z — y|| < n. Soient (an)nen €t (bp)nen
deux suites de A qui convergent vers x et y respectivement. Comme

lim |la, —by| = ||z — y|| < n, pour n assez grand, ||a, — by|| < 7
n—-+oo

et donc || f(an) — f(bn)| < €. En faisant tendre n vers l'infini on a
| f(z) = f(y)|| < e. Donc 7 est un e-module de continuité uniforme pour
f, et f est bien uniformément continue. <

Parmi les nombreuses applications de ce résultat, citons par exemple
une construction de l'intégrale des fonctions continues par morceauz (ou
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mieux réglées) sur un segment [a,b] et d valeurs dans un espace de Ba-
nach, en prolongeant l’intégrale des fonctions en escalier qui est elle
facile a définir.

L’exercice suivant présente quelques résultats sur les espaces uni-
formément converes. La derniére question montre notamment que la
norme triple d’une forme linéaire continue sur un tel espace est toujours
atteinte (voir Uezercice 1.28).

3.9. Espaces de Banach uniformément convexes

Soit V un espace de Banach. On dit que V est uniformément
convexe lorsque

Tty
2

Ve > 0,36 >0, ¥(z,y) € B, (\|x—y\|>5:>H Hgl—é),
B étant la boule unité fermée de V.

1. R? muni de la norme euclidienne || |2 est-il uniformément
convexe ? Reprendre la méme question pour la norme || ||; définie
par [(z1,22)[1 = [w1| + |22l

2. Soit V un espace uniformément convexe et (uy,)n>0 une suite
d’éléments de V telle que lim [lu,|| =1et lLm |ju, +upl = 2.

n—-4o0o ,p—>—+o00

Montrer que la suite (u,)n>0 converge.

3. Soit V un espace uniformément convexe et K un convexe
fermé non vide de V. Montrer que K contient un unique élément
de norme minimale.

4. Soit V un espace uniformément convexe et f une forme
linéaire continue non nulle. Montrer qu’il existe un unique élément
xo de norme 1 tel que ||f|| = f(zo)-

(Ecole normale supérieure)

> Solution.
1. Montrons que R? muni de la norme euclidienne est uniformément
convexe. Soit (z,y) € B2 Par le théoréme de la médiane on a

2 2

r+y 1
- 3 lllz + llyll3) < 1.

2

T —y
2

2

Tty

2
Soit £ > 0. Si ||z — y||2 > €, alors <1- % et il suffit donc de

2

prendre § = % pour vérifier la définition.
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Notons que cette démonstration est valable pour tout espace de Hil-
bert.
En revanche R? muni de la norme | ||; n’est pas uniformément

1 1
convexe. Pour ¢ € )0, 1], considérons les vecteurs x = (5 — Z, 3 + %)
1

1 € €

ety =(5+55-3) Onalel=lylh =1 Jo—ylh =cet

3 = (%, %) = 1. Il ne peut donc pas exister de réel § > 0
1 1

vérifiant la définition. La figure suivante représente la boule B dans les

deux cas considérés.

A
X

2. Avant d’appliquer la propriété d’uniforme convexité aux termes
de la suite (uy)nen, On se rameéne & une suite a valeurs dans B. Comme

lim |lu,|| =1 il existe un rang N tel que u,, # 0 pour n > N. On pose
n—-+oo
alors v, = HZ—"” € B. Pour n,p > N, on a
. ) - ( 1 1 )
Uy +vp = — (U, +u — = |y
N 7 RN (774 B (7 VA

On en déduit par I'inégalité triangulaire que

l[un + upll 1 1
Ion 2l - ~ |
S T I It (TR T R
puis que
[llvn + vp|| — 2] < w_2‘+'1_ llupll |
lnl lenl
Sachant que lir}rl lunll = 1 et liHle |tn + up|| = 2, on a donc
n—+00 n,p——+o00
n,;l7h~>n}roo”vn +UP|| =2.

Soit € > 0 et § > 0 donné par I'uniforme convexité de V. Puisque

lim Un U 1, il existe ng € N tel que, pour n,p > ng,
n,p—-+oo
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Un + Up

> 1 — 4. Par contraposition de 'implication qui figure dans

la définition de I'uniforme convexité, on en déduit que, pour n,p > nyg,
|lvn, — vp|| < €. La suite (vp)nen est donc de Cauchy. Comme V est sup-
posé complet elle converge, disons vers un vecteur v. Sachant que, pour
n > N, u, = ||up||v, et que lim |lu,|| = 1, la suite (u,)nen converge
n—-+o0o
également vers v.
3. Soit @ = inf{||z||, z € K}. Par définition de la borne inférieure, on

peut définir une suite (z,,)nen & valeurs dans K telle que lirf lzn || = a.
n—-+0o0o
e Sia=0,alors lim |z,] = 0. La suite (z,)nen converge vers 0
n——+oo

et 0 appartient & K car K est fermé. Dans ce cas 0 est 'unique vecteur
de K de norme minimale.

- = 1. D’autre part, pour (n,p) € N2,

eSia>0,ona lim
n—-+oo

In _2|_ T ¢ K par convexité et on a donc a < Tn 42—xp < llzn ; Izl
Ly . Tn + Tp .
On en déduit par encadrement que lim =PIl = . Ainsi, la
n,p——+o00 2

suite (m—") ox vérifie les hypotheses de la question précédente. On en
a /n

déduit qu’elle converge, et donc que la suite (z,,)nen converge. Appelons
x la limite de (2, )nen. Puisque K est fermé, 2 appartient a K et ||z|| = «
par continuité de la norme. Montrons que = est le seul élément de K de
norme «. Raisonnons par l'absurde en supposant qu’il existe y € K

tel que |ly|| = « et y # z. Considérons ¢ € }O HwayH [ et 6 > 0
11 )
correspondant. On a alors <aa:, Y ) € B et x — fy > e. On en

1 1
—x+ —y
déduit % < 1 -6, cest-a-dire

L;—yH < a—ad. Or :HQ—y

appartient a K puisque K est convexe, et cela est contraire a la définition
de a. Donc K possede un unique élément de norme minimale.

4. Soit K = f7I(||f]l). Comme f n’est pas nulle, Im f = R et K
n’est pas vide. De plus, f est continue, donc K est fermé. Enfin K est
convexe, puisque c’est un sous-espace affine de V. D’apres la question
précédente, K possede un unique élément xy de norme minimale. Nous
allons montrer que ||zo|| = 1.

Par définition de la norme triple on a || f]| = f(zo) < |lzollllf]l

|

et donc [|zg|| > 1. Soit © € E \ Ker f. Le vecteur |||(

I M=l <
|f ()]

< |Ifll- Cela reste vrai pour tout z non nul de E. En pas-

x appartient

a K et on a donc, par définition de g,

2 ||lxo||, c’est-a-dire
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sant & la borne supérieure on en déduit que ||zol|||f]] < ||f]l et donc
lzol| < 1. Finalement ||zo|| = 1 et xp est l'unique élément de E de
norme 1 dont 'image par f est || f]|, puisque K contient un seul élément
de norme minimale. <

Un des intéréts de cette notion géométrique d’uniforme convexité
tient au théoréme de Milman-Pettis qui affirme que tout espace uni-
formément convezxe est réflexif (c’est-a-dire canoniquement isomorphe d
son bidual).

L’énoncé suivant montre qu’un espace de Banach séparable est
isométrique a un quotient de l’espace £'. La derniére question fait donc
intervenir la notion d’espace vectoriel quotient et nous renvoyons le
lecteur au tome 1 d’algébre (page 260) pour des rappels sur ce sujet.

3.10. Espaces de Banach séparables

Soit X un espace de Banach réel. On suppose qu’il existe une suite
(Zn)n>0 d’éléments de X dense dans la boule unité fermée B de X.

—+o0
On note ¢* = {(a,) € RN, 3 |a,| < +00}. Soit ¢ I'application de
=0
n oo
¢* dans X qui & (ay,)n>0 associe le vecteur Y. a,x,.
n=0

1. Montrer que ¢ est bien définie et continue.

2. Montrer que ¢ est surjective.

3. Montrer qu’on définit une norme sur l’espace quotient
//Kerp en posant N(a) = ;1)161£||b||1, puis que l'espace X est

isométrique a (¢1/ Ker p, N).

(Ecole normale supérieure)

> Solution.
1. Soit a = (an)n>0 € ¢'. On a pour tout entier n € N,

lan@n|l < lan|||zn | < |an|

de sorte que la série »  a,x, est absolument convergente et donc conver-
gente, puisque X est complet. Cela justifie la définition de ¢. Il est clair

que ¢ est linéaire. L’espace ¢! est naturellement muni de la norme définie
+o0o

par |lalls = Y |an|. On a la majoration
n=0

—+oo —+o0
le@) <D lanznll <D lan| = lalh,
n=0

n=0
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ce qui montre que @ est continue et que [|¢] < 1.
2. Pour montrer que ¢ est surjective il suffit, par linéarité, de mon-
trer qu’elle atteint tous les vecteurs unitaires. Soit £ € X de norme 1.

+oo
On veut montrer Pexistence de (a,)nen € £ telle que z = Y apx,.
n=0

- Le vec-

DN =

Comme z € B on peut déja trouver ny tel que ||z — zp, || <
teur 2z — 2z, est alors dans B et comme la suite (x)g>n, reste dense
dans B on peut trouver ng > ny tel que |2z — 2x,, — Tp,|| < 3 Pour-
suivons avec la méme idée. Le vecteur 4o — 4x,,, — 2z,, est dans B et
on peut trouver nsg > ng tel que |4z — 4z, — 22y, — Tp,|| < % Par
récurrence on construit ainsi une suite strictement croissante d’indices
(nk)k>1 telle que

Vp=1, 2Pz —2Px, — - -2z, | <L

Cela s’écrit aussi

1 1
Vp=1, |z—x, —"'_anpu < BT
Il suffit alors de poser a, = 0 si n n’est pas 'un des entiers n; et

Uny, = Gp= POWT tout k > 1. Il est clair que la suite (a,)n>0 est dans ¢!

—+o0 +oo +oo
avec |lal1 = Y |an] = X T =2, etquexr = > ap,T, = w(a).
n:O' k=1 2 n=0
On en déduit que 1 = ||z[| = [[p(a)|| < |lellllall = 2[l¢ll donc que

1 L, Y .
llell = 3 Mais évidemment on peut trés bien reprendre la construction

précédente en remplacant le réel 1 par un réel quelconque de 10,1[. Il

en résulte donc que || = 1.

3. Montrons un résultat plus général. Soit E un espace normé et
F un sous-espace vectoriel fermé de E (c’est bien le cas du sous-espace
Ker ). On pose N(z) = érelgﬂyﬂ pour toute classe T de E/F et on va

prouver qu’il s’agit d’'une norme. La positivité est évidente. Supposons
que N(Z) = 0. On peut donc trouver une suite (fy,)n>0 de F telle que
|z + fnll = 0. Mais alors la suite (—f,) converge vers x et comme F est
fermé x € F et T = 0. L’axiome d’homogénéité est évident. Passons a
I'inégalité triangulaire. Soient (z1,z2) € E et (f1, f2) € F2. On a

N(@1 +71) < ||lo1 + fi + 22 + fol| < |21 + fill + [J22 + fo

et il suffit de passer a la borne inférieure sur f; puis sur fo pour obtenir
N(z1 + 71) < N(Z7) + N(3). Donc N est bien une norme sur 1’espace
quotient E/F.
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Cela s’applique donc au quotient £/ Ker . L’application ¢ induit
alors une bijection linéaire @ entre ¢!/ Ker ¢ et X. On va montrer que
cette bijection est une isométrie, 'espace £/ Ker ¢ étant muni de la
norme quotient. Cela découle assez simplement de la remarque donnée
4 la fin de la question précédente. En effet, soit z € X et a € £}
un antécédent de x par ¢. On veut prouver que ||z|| = N(@). Comme
x = ¢(a), on a ||z|| < |lellllellr < |lalli et comme cela vaut pour tout
antécédent a de x, on a ||z|| < N(@). Mais on a vu & la fin de la question
précédente, que pour tout r € ]0, 1] on peut trouver un antécédent a de

x tel que ||all; = 1 |z||. On a alors rN(@) < ||z|| et en faisant tendre r

vers 1 on récupere 'inégalité inverse. D’otu le résultat. <

Le fait que ¢*/Ker o est isométrique a X implique notamment
la complétude de (*/Kerp. En fait le lecteur pourra prouver plus
généralement que si E est un espace de Banach et F un sous-espace
fermé de E, alors le quotient E/F est aussi un Banach pour la norme
quotient définie ci-dessus.

L’exercice suivant concerne les algebres de Banach complexes. Par
définition, une algébre de Banach est une algébre unitaire A munie d’une
norme |||, telle que ||ab|| < |lal|||b]] pour tout couple (a,b) € A2, et
qui est compléte pour cette norme. Lorsque E est un espace de Banach,
Ualgébre L.(E) des endomorphismes continus de E munie de la norme
triple induite par la norme de E est une algébre de Banach. Cet exemple
fondamental pourra servir de guide dans la résolution de [’exercice.

3.11. Spectre d’un élément d’une algébre de Banach complexe

Soit A une algebre de Banach complexe d’unité e. Pour z € A
on pose
o(z) = {A € C, Ae — z non inversible}.

1. Montrer que o(z) est un compact de C. On admettra pour la
suite que o(z) est toujours non vide.
2. On suppose que tout élément non nul de A est inversible. Que
peut-on dire de A 7
3. Pour z et y dans A, comparer o(zy) et o(yz).
(Ecole normale supérieure)

> Solution.

1. Notons G le groupe des éléments inversibles de 1’algebre A. Pour
prouver que o(x) est fermé, il est naturel de commencer par montrer que
G est un ouvert de A.
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Siz e A,ona |z"] < |z||™ pour tout n > 1 par sous-multiplicativité
de la norme. Il en résulte que si ||z|| < 1 alors la série > z™ est abso-
lument convergente et donc convergente puisque A est compléete. Si on
note y sa somme on a xy = yr = y — e et cela prouve que e — x est
inversible d’inverse y. On vient donc de montrer que la boule ouverte de
centre e et de rayon 1 est incluse dans G. Il est alors facile de transporter
ce résultat en tout point de G.

Soit zp € G et h € A tel que ||h]| < ||z ']|~". On a alors ||hzy | <
[Allllzo ]l < 1. On en déduit que e — hay' € G, puis que xg — h =
(e —hzg )z appartient & G. Donc G contient la boule ouverte de centre
zo et de rayon |25 || *. Ainsi G est ouvert et par conséquent I'ensemble
A\ G des éléments non inversibles de A est fermé.

Soit z € Aet fr : A € C—— de —x € A. La fonction f, est continue
car

YALN) €C% lfaN) = L)< A= X]llel].

Comme o(x) est 'image réciproque par f, de A\ G il est fermé dans
C. De plus, si |A| > ||z| alors, d’apres ce qui précede, e — A7tz € G et
de —x € G donc A n’appartient pas & o(z). Autrement dit si A € o(x)
alors |A| < ||z|| donc o(x) est borné.

Conclusion. L’ensemble o(x) est un ensemble fermé et borné de C.
C’est un compact.

La non-vacuité de o(x) n’est pas triviale et nécessite quelques
résultats sur les fonctions holomorphes.

2. Supposons que G = A\ {0}. Soit z € A et A € o(z) (on a
admis que o(z) est non vide). Comme Ae — z n’est pas inversible, il est
nul et z = Ae. Ainsi A = Ce et il est facile de voir que 'application
@ : A€ Cr—— Xe € A est un isomorphisme d’algebre. Nous venons de
démontrer que A est isomorphe au corps C.

Le résultat de cette question constitue le théoreme de Gelfand-Mazur.

3. Lorsque A = L(E) ol E est un C-espace vectoriel de dimension
finie, ’ensemble o(z) est le spectre de 'endomorphisme z, c’est-a-dire
Pensemble de ses valeurs propres. On a alors o(zy) = o(yx) pour deux
endomorphismes z et y quelconques, car xy et yx ont le méme polynoéme
caractéristique. Notons que lorsque E est de dimension infinie le spectre
o(x) d’'un endomorphisme x € L(E) n’est pas forcément réduit a ’en-
semble des valeurs propres : une valeur propre est un scalaire A\ tel que
Adg —z n’est pas injectif, mais en dimension infinie un endomorphisme
injectif n’est pas nécessairement inversible et on a donc seulement 1'in-
clusion Spx C o(x).

Nous allons voir que dans le cas d’une algebre de Banach quelconque
les ensembles o (xy) et o(yx) sont presque égaux seul le scalaire 0 posant
un probléme. En effet, soit A # 0. Montrons que A € o(xy) si et seulement
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si A € o(yx). Cela revient a démontrer que Ae — zy € G si et seulement
Ae—yz € G ou encore que e—\"'zy € G si et seulement sie—A"1yz € G.

Dans le cas ott |A7Y|||z||lyll < 1on a [Atay|| < 1et A lyz| <1
puisque la norme est une norme d’algebre et nous savons alors, d’apres
la question 1, que e — A lzy et e — A~ lyx sont dans G avec

+o0 too
(e—A"tay)™t = Z AT (ay)™ et (e — A lyx) Tt = Z A7 (yx)".
n=0 n=0

On en déduit que

+o0
(e=A"yz)™h = e+ Y A Tylay)" e
n=1

+oo
e+ Aty <Z A‘”(ij)") x
n=0

= e+ X tyle—A"tay)ta

Inspirons-nous de ce résultat pour traiter le cas général *. Supposons
que e—A"'zy € G et notons ¢ son inverse. Montrons qu’alors e— A" lyx €
G, et a pour inverse u = e + A~ lytx. Pour cela, calculons (e — A\~ 1yz)u :

(e = A lyx)u = e — N tyx + A yte — A 2yaytr.

Or, par définition de t, (e — A™tay)t = e, et donc —e +t — A~ tayt = 0,
puis
A Yyz + A yte — A Zyayte = 0.

On en déduit que (e — A"lyz)u = e et on montre de méme que u(e —
A~ lyz) = e. Ceci prouve que e — \~lyr € G. Comme z et y jouent des
roles symétriques, on a bien 1’équivalence voulue.

Conclusion. Si A # 0, alors A € o(zy) si et seulement si A € o(yx)
autrement dit

(o (wy) U{0} = o(yz) U {0}

Il reste & examiner si on a nécessairement o(zy) = o(yx), c’est-a-dire
si 0 € o(zy) équivaut a 0 € o(yx), soit encore si zy € G équivaut a
yx € G.

e Montrons que si A est de dimension finie, la réponse est positive.
Soit (z,y) € A? tel que zy € G. Montrons qu’alors z et y sont dans G.
Considérons pour cela 'application ¢, : a« € A — az € A. L’application
. est clairement linéaire. Montrons qu’elle est injective. Soit @ € A
tel que ax = 0. Par hypothese, xy est inversible : il existe z € A tel

1. Le lecteur rencontrera cette méme idée dans ’exercice 3.2 du tome 1 d’algebre.
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que xyz = e. On a alors : @ = azyz = Oyz = 0. Le noyau de ¢, est
réduit & {0} et ¢, est injective. Comme A est de dimension finie, @,
est bijective. En particulier, il existe 2’ € A tel que z’x = e. Si on
considére maintenant 'application ¢, : a € A — xa € A, on a xa =0
qui implique a = x’za = 0. L’application 1, est elle aussi linéaire et
injective. Il existe donc 2" € A tel que xz”" = e. Ainsi x est inversible &
droite et & gauche, donc inversible. On a donc x € G et y = 2~ (zy) € G.
On en déduit yz € G. Etant donnés les roles symétriques joués par z et
y, on a bien ’équivalence voulue.

Conclusion. Si A est de dimension finie alors, pour tout (z,y) € A2,
on a o(zy) = o(yx).

e En revanche si A n’est pas de dimension finie, on peut ne pas avoir
o(xy) = o(yx). Donnons un exemple. Considérons l’espace vectoriel E =
(2(C) des suites de carré sommable, muni de la norme canonique définie,
pour u = (up)nen € £2(C) par

+oo
ull* =D unl*.
n=0

L’espace E muni de cette norme est un espace de Banach (c’est en fait un
espace de Hilbert, voir I'exercice 3.18 ci-apres). Considérons 1’algébre A
des endomorphismes continus de E, munie de la norme associée. Comme
E est un espace de Banach, A est une algebre de Banach, dont 1'unité
est idg.

Considérons les éléments de A suivants : = : (uy)neN — (Un+1)neN
et ¥ : (un)neny — (0,ug,u1,...). On a, pour tout u € E, ||z(u)|| < |lu|
et ||y(u)| < |Ju|| donc z et y appartiennent & A. On a, pour tout u =
(up) € E, zy(u) = u donc xy = Idg € G. Mais, pour tout u = (u,) € A,
yx(u) = (0,uy,usg,...). L’application yx n’est pas injective, car toutes
les suites dont tous les termes sauf le premier sont nuls ont pour image
0 par yx. A fortiori, yx n’est pas inversible. On a donc 0 ¢ o(zy) et
0 € o(yx). Dans cet exemple, o(zy) # o(yz). <

Les exercices suivants concernent le théoréme de Baire.

3.12. Le théoréme de Baire

Soit E un espace vectoriel normé complet.
1. Soit (©,)nen une suite d’ouverts denses de E. Montrer que
I’ensemble 2 = ﬂ ),, est dense dans E.
neN
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2. Soit (Fp,)nen une suite de fermés d’intérieur vide de E. Mon-

trer que F = U F,, est encore d’intérieur vide.
neN

(Ecole normale supérieure)

> Solution.

1. Soit a € E et r > 0. Montrons qu’il existe x € € tel que
la — z|| < r. Comme la boule B(a,r) est ouverte, elle rencontre 1’ou-
vert dense €. Il existe donc zg € E et 0 < rg < 1 tels que la boule
fermée B(wg,70) soit incluse dans B(a,r) N Qo (cette intersection est
ouverte). L’ouvert B(xg, 7o) rencontre I'ouvert dense ;. Il existe donc

1 —
z1 €EEet 0 <r < 3 tels que B(z1,71) C B(zo,70) N Q1. On pour-
suite la construction des suites (z,)n>0 €t (Tn)n>0 par récurrence : si
Zo, ..., Tn—1 sont définis, ainsi que ro,...,r,—1, l'ouvert B(z,—1,7,-1)
rencontre 'ouvert dense €2,,. Il existe donc x,, € Eet 0 < r,, < on tels

que B(z,,r,) C B(zn-1,7n-1) N Q.
Les boules fermées B(x,,, 7,,) sont embgitées : il s’ensuit que sin > N
et m = N, x,, et z,,, sont tous deux dans B(xn,N) et

2 1
|Zn — Zmll < |77 — 2| + H IN — me Sy =

oN ~ 9N-1'
La suite (,,)n>0 est donc de Cauchy. Comme E est complet, elle converge
vers un élément = € E.

Soit N € N. Pour n > N, z,, € B(an,ry). Comme B(xy,7N) est
fermée, la limite x est encore dans cette boule. En particulier, x € Qy et
z € B(a,r) puisque B(zx,rn) C -+ C B(xg,70) C B(a,7). On conclut
que z € QN B(a,r).

Conclusion. L’ensemble  est dense dans E.

2. Soit Q,, le complémentaire de F,, pour n € N. Alors §2,, est un
ouvert dense de E, donc l'intersection ) des {2, est dense d’apres la
question précédente, et le complémentaire de €2, qui est égal & la réunion
des F,,, est sans point intérieur. <

Le théoréme de Baire est a la base de nombreux résultats généraux sur
les espaces de Banach : théoréme de Banach-Steinhaus (voir 'exercice
3.13 ci-apres), théoréme de Uapplication ouverte (voir les exercices 1.37
et 1.38 pour des cas particuliers),... On en déduit aussi qu’un espace
normé de dimension dénombrable (comme R[X] par exemple) ne peut
pas étre complet : en effet, si (ey)nen est une base de l’espace considéré,
les sous-espaces F, = Vect(eq,...,en) pour n € N sont tous fermés et
d’intérieur vide et leur réunion est égale a l’espace entier.
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3.13. Théoréme de Banach-Steinhaus

Soit E un espace de Banach, F un espace normé et (T;);e1 une
famille d’applications linéaires continues de E dans F. On suppose
que pour tout z € E, la famille (T;(x));e1 est bornée dans F. Montrer
que la famille (T;);¢cr est bornée dans L.(E, F).

(Ecole normale supérieure)

> Solution.

L’outil essentiel est le théoréme de Baire utilisé comme suit : sin > 1
on pose F,, = {z € E,Vi € I, |T;(x)| < n}. Les F,, sont des fermés de E
et I’hypothese affirme que

E= UFn

n>1

Or lintérieur de E est E, qui n’est pas vide. Donc, comme E est complet,
d’apres le théoreme de Baire I'un des fermés F,, au moins est d’intérieur
non vide. Il existe donc N € N, a € E et 7 > 0 tel que B(a,r) C Fx.
Or lorsqu’une application linéaire est bornée sur une boule fermée il est
facile d’en déduire une majoration de sa norme triple. En effet, soit y € E
avec ||y|| < 1. Comme a + ry € B(a,r), on a pour tout i € I

ITi(a+ry)| <N et r[Ti(y)| <N+ [Tia)]-

Donc || T;(y)|| <
tout s € 1. «

et par suite || T;|| <

w et ce pour
T

N+ [[Ti(a)|
T

Nous regroupons ci-apres plusieurs applications moins théoriques
du théoréme de Baire. Bien que celui-ci ne soit pas au programme
des classes préparatoires, application suivante reste par exemple tres
réguliérement posée aux oraux. Il s’agit d’une généralisation de l’exver-
cice 4.23 du tome 1 d’analyse.

3.14. Le lemme de Croft

Soit f : Ry — R une fonction continue. On suppose que pour
tout > 0 la suite f(nx) tend vers 0 lorsque n tend vers +oo.
Montrer que f tend vers 0 en +oo.

(Ecole normale supérieure)
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> Solution.

La question est nettement plus facile si on suppose f uniformément
continue (voir 'exercice 4.23 du tome analyse 1), et ce cas particulier est
fréquemment posé en premiere question. Pour le cas ou f est seulement
continue, on va utiliser le théoreme de Baire. Soit € > 0 fixé. On considere
pour tout entier n,

Fo={z Ry, ¥p>n, |f(pz)| <e} = ({z € Ry, [f(pr)| < e}

p=n

En tant qu’intersection de parties fermées, F,, est un fermé de R. Par hy-
pothese, on a U F,, = R,. Comme R n’est pas d’intérieur vide, d’apres
n>=0
le théoreme de Baire, I’'un au moins des ensembles F,, est d’intérieur non
vide. Soient donc N € N et a < 3 tel que Jo, B[C Fn. Pour tout p > N et
tout  dans |, B[ on a | f(px)| < e. Mais pour p assez grand, les intervalles
Ipa, pBl et |(p+ e, (p+ 1)5[ se coupent (il suffit que (p+1)a < pp i.e.
que p soit plus grand que ﬁ ). Il en résulte que U |pa, pB| contient
p=N

un intervalle de la forme ]A, +oo[. On a pour tout y > A, |f(y)| < e.
Comme ¢ était arbitraire, on a prouvé que f tend vers 0 en +o00. <

L’exercice suivant est a rapprocher de [’exercice 6.2 du tome 1
d’algébre. On y démontre, en utilisant le théoreme de Baire, qu’une suite
de sous-espaces de méme dimension d’un R-espace vectoriel de dimen-
sion finie posséde un supplémentaire commun.

3.15. Supplémentaire commun

Soient E un R-espace vectoriel de dimension n > 1, p < n et
(Fr)ken une suite de sous-espaces de dimension p.
1. Montrer que U Fr #E.

keN
2. En déduire V'existence d’un sous-espace vectoriel W de E tel

que W @ Fy = E pour tout k£ € N.

(Ecole polytechnique)

> Solution.

1. Comme les F sont des sous-espaces de dimension p < n, ils sont
sans point intérieur (en effet, si F' est un sous-espace et si B(a,r) C F avec
r > 0, alors B(a,7) —a =B(0,r) CFet E = U B(0, Ar) C F). D’apres

AER
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le théoreme de Baire, U F} est sans point intérieur, et en particulier il

keN
ne peut pas étre égal a E.

2. Montrons 'existence de W par récurrence sur n—p. Sin—p =1,
d’apres ce qui précede, il existe x € E qui n’appartient a aucun des
hyperplans Fy. Clairement, si on pose W = Rz, on a pour tout k € N,
WaF,=E.

Supposons le résultat vrai au rang n —p — 1 avec n — p > 2. D’apres
la question 1, il existe z € E\ U Fi. Notons pour k € N, F|, = F, @Rx.

keN
Ce sont des sous-espaces de dimension p + 1. D’apres ’hypothese de
récurrence, il existe W' supplémentaire commun & tous les F},. Posons

enfin W = W @ Rz. On a pour tout k& € N,
E=WooF,oR,) = (W ORx)dFr, =W DFy,

par associativité. Donc W est un supplémentaire commun aux F. <

On peut donner un résultat plus général avec une preuve qui n'utilise
pas de topologie : si K est un corps infini et I un ensemble d’indice avec
I < |K]|, un K-espace vectoriel E ne peut pas étre réunion d’une famille
(F;)ie1 de sous-espaces stricts.

Comme derniére application, voici une question difficile de conver-
gence uniforme.

3.16. Convergence uniforme

Soit f : Ry — R une fonction continue. On suppose que pour
tout A > 0, HI—P flz+X) — f(x) = 0. Montrer que pour tout a < b
r—r+00

dans Ry cette convergence est uniforme en A € [a, b].
(Ecole polytechnique)

> Solution.
On fixe 0 < a < b. Il s’agit de montrer que

Ve>0,3A >0,V 2 A, VA€ [a,b], |[f(z+ ) — f(z)] <e.

Raisonnons par I'absurde et supposons cette convergence non uniforme
sur [a, b]. Par conséquent, il existe ¢’ > 0 tel que pour tout A > 0, il existe

A = Aet Ay € [a,b] tels que |f(xa + Aa) — f(za)| > €. Travaillons
séquentiellement : en prenant pour A les termes d’une suite qui tend
vers +00, on peut trouver une suite (,)n>0 qui diverge vers +o0o et une
suite (Ap)n>0 du segment [a, b] telles que | f(zy, + An) — f(xn)] > €’ pour
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tout n. Par compacité du segment [a, b, on peut trés bien supposer que
la suite (A, )n>0 converge vers une valeur A, quitte & la remplacer par
une de ses sous-suites. Par inégalité triangulaire, on obtient

e <[f(@n +An) = f(@n + Aso)| + [f (@ + Asc) = f(zn)]- (%)

L’hypothese permet de dire que le second terme tend vers 0. Le point
délicat est de majorer le premier terme et c’est pour ce faire que 1'on
utilise le théoreme de Baire. Soit € > 0 qui sera précisé a la fin. On pose
pour tout n, F,, = {\ € [a,b], Yz = n, |f(z+ ) — f(x)] <e}. On a

Fp= () {A€la,b],|f(z+N) - f(a)] <}

T>n

Pour = > n, fixé 'ensemble {\ € [a,b], |f(z+A)— f(z)| < €} est un fermé
de [a,b], car c’est 'image réciproque du fermé [0,¢] par une fonction
continue. Il en découle que F,, est fermé en tant qu’intersection d’une
famille de fermés. Par hypotheése on a

[a,b] = U F,.

n>=0

Comme R est complet et comme [a,b] est d’intérieur non vide, le
théoreme de Baire assure l’existence d’un entier N tel que Fy soit
d’intérieur non vide. On peut donc trouver o <  dans [a,b] tels que
[, 8] C Fn. Par conséquent,

Ve 2N, VA€[a,[], |f(z+A)—f(z)|<e.
On en déduit que pour tout > N et tout ¢t € [0,8 — a,
fle+t) = f@) <|fle+t) = fl@+t+a)[+[f(@+t+a)— fz) <2

car t + « € [a, O]
Reprenons alors 'inégalité () ci-dessus : pour n assez grand, on a
T+ Ap et p + Ao = Net | A, — Aoo| < 8 — a done

|f(@n 4+ An) = f(@n + Aso)| < 2e.

Comme |f(zn + Aso) — f(zn)] tend vers 0, ce terme est aussi inférieur
a ¢ pour n assez grand. On en déduit que pour n assez grand, &’ < 3e.
’

C’est évidemment absurde car on peut prendre € < %

Conclusion. La convergence de © — f(x + A) — f(x) vers 0 est
uniforme pour A € [a,b]. <
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Nous avons regroupé maintenant des exercices qui concernent les es-
paces de Hilbert, c’est-a-dire les espaces préhilbertiens complets. On com-
mence par les aspects géométriques et l'important théoréeme de projection
sur un convexe fermé qui généralise le cas de la dimension finie étudié
dans Uezercice 1.43 du tome algébre 3. L’argument de compacité utilisé
pour établir lexistence du projeté est ici remplacé par un argument de
complétude.

3.17. Projection sur un convexe fermé

Soit H un espace de Hilbert et C un convexe fermé non vide de H.

1. Soit z € E.

a. Montrer qu’il existe y € C tel que ||y —z|| = d(x,C). Vérifier
I'unicité de y. Le point y est appelé projeté orthogonal de x sur C.

b. Soit y € C. Démontrer que y est le projeté orthogonal de x
sur C si, et seulement si, pour tout z € C, (y — x,y — z) < 0.

2. On note p l'application qui a un élément de H associe son
projeté sur C. Montrer que p est 1-lipschitzienne.

3. On suppose que C est un sous-espace fermé de H. Montrer
que, pour tout x € H, x — p(x) € C*+. En déduire que H = C @ C*.
Que peut-on dire de p?

4. Soit f une forme linéaire continue sur H. Montrer qu’il existe
un unique vecteur a € H tel que, pour tout = € H, f(z) = (a, x).

(Ecole polytechnique)

> Solution.
l.a. On pose d = d(z,C) = ’1ln£ |lx — h||. Par définition de la borne
€

inférieure, il existe une suite (hy,),>1 d’éléments de C telle que, pour tout

1
n, [[h, — z||* < d* + —. On a, pour tout (z,2’) € H,
n

Iz = 2112 = 212)|* + 2] 2| — ||z + 2'||.
On en déduit, pour (n,p) € (N*)2,

I = hpll* = 2llhn = @[|* + 2llhp = 2]|* = [hn + by — 22
2

1
= 2~ 2l + 2y = = 4 5 (b 1)~ 0
2 2 2 2
L2+ 422+ —4d> < =+ 5,
n p nop

puisque %(hn + hyp) € C. On en déduit que la suite (hy,) est de Cauchy,

donc convergente, puisque H est complet. On note y sa limite. Comme C
est fermé, y € C. Par continuité de la norme, on a ||y — z|| = d = d(z,C).
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Montrons I'unicité de y. Supposons qu’il existe ¥’ # y dans C tel que
ly" — y|| = d. On a par la méme égalité,

1 , 2
Sy+y) -

2 Hl 1
2

5(517 —y) = 5(1’ - y')

1 1
=5y =21+ y" = 21*) = Zlly = 'II”

1
=d* = 2lly—v'|* < d*,

ce qui est impossible car %(y +1') € C. Donc y est unique.

b. Supposons que y est le projeté de x. Considérons z € C. Pour
tout A € [0,1], (1 — AN)y + Az € C, donc

[z =1 =Ny =Xzl = llz —y + Ay = 2)[| = [l= — y]|.
En développant, on en déduit
lz = ylI* + 2XMz — g,y — 2) + Nly — 2[* > [« — yl*.

On obtient, pour A € ]0,1], 2(x —y,y—z) + M|y —z||* > 0, puis en faisant
tendre A vers 0, (y — z,y — z) < 0.
Réciproquement, si cette condition est réalisée, on a, pour tout z € C,

lz—z) = [l(y—2)—(y—2)|I* = lly—z|*+ly—2*-2(y—=z,y—2) > |ly—=?,

donc y est le projeté orthogonal de x sur C.

2. Soit (x,2') € H%, y = p(x), ¥’ = p(2’). On a, d’apres la question
précédente, (y —x,y —y') < 0 et (y — ',y —y) < 0. On en déduit en
additionnant, (y—y', y—x+2'—y') < 0et donc ||y—v'||? < {x—2',y—y').
Par I'inégalité de Cauchy-Schwarz on en déduit

ly =9/ I* < lle = 2" [[ly = ¥/

et donc ||y — ¢'|| < |Jx — «'||. Ainsi Papplication p est 1-lipschitzienne
donc continue.

3. Soit x € H, y = p(x). Si z € C, alors t = y — z € C donc d’apres
la question 1, (y — z,y — t) = (y — z, 2) < 0. Comme —z € C, on a aussi
(y—x,—z) <0 et donc (y—z,z) =0. Cela est vrai pour tout z € C donc
r—p(z) = z—y appartient & C*. En écrivant x = p(x)+z —p(x), on voit
que H = C + C*t. La somme est évidemment directe. La décomposition
x = p(z) + x — p(x) montre que p est la projection orthogonale sur C au
sens habituel. Elle est donc linéaire.

4. Traitons d’abord l'existence. Si f est ’application nulle, le vecteur
a = 0 convient. Sinon Ker f est un sous-espace strict de H, fermé car
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f est continue. D’apres la question précédente, H = Ker f @ (Ker f)*
et (Ker f)* # {0} car Ker f # H. Soit h € (Ker f)*, non nul. Alors

f(h) # 0 et, pour tout © € H, © — %h € Ker f. On a donc

e F@N S
o-<h, f(h)h> (h.2) — S InIP.

ce qui équivaut a
f(h)
f(z) = < h,z).
(212
ﬁc’gﬁg h convient.

Montrons 'unicité. Soit o’ € H tel que, pour tout = € H, f(z) =
{a,x) = (a/,x) et donc (a —a’,x) = 0. En particulier ||a —a'[|?> = 0, donc
a =a.

Le résultat de cette question constitue le théoreme de représentation
de Riesz-Fréchet.

Le vecteur a =

Dans lexercice suivant, on rencontre le modéle d’espace de Hilbert
séparable, & savoir lespace 0 des suites de carrés sommables.

3.18. Espace £

Soit Hy = {(an)n>1 € RV, D n’al < +oo},
HO = {(an)n21 S RN*7 Zai < +OO},
2

* a
H_| = {(an)n>1 S RN , Z n—g < +OO}
1. Définir des produits scalaires sur les H; et montrer qu’ils sont
complets pour les normes associées.
2. Pour b € H_;, montrer que Ay : Hi — R qui & (an)n>1
“+o00
associe Y. apb, est une forme linéaire continue sur H;. Quelle est
n=1
sa norme ? Réciproquement, toute forme linéaire continue sur H;
est-elle de ce type?
3. Montrer que la boule unité de H; est une partie compacte de

Hp.

(Ecole normale supérieure)

> Solution.
1. Traitons un cas plus général qui inclut les trois exemples proposés.
Pour w = (wp)n>1 suite de réels strictement positifs, notons H,, 'en-
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semble des suites (a,),>1 telles que la série 3" wy,a? converge. Si (an)n>1
et (by)n>1 sont dans H,,, de I'inégalité (a,, +b,)? < 2a2 +2b2, on déduit
que la suite (a,, + by )n>1 est également dans H,,. Comme H,, est claire-
ment stable par la multiplication externe par les scalaires, il s’agit d’un
sous-espace vectoriel de RN, Pour a = (@n)n>1 €t b= (bn)n>1 dans Hy,
on pose

+oo
(a,by = Z Way Ay, by, -
n=1

Cette série converge car 2a,b, < a2 + b2 pour tout n. On définit ainsi
une forme bilinéaire symétrique positive sur H,,. Elle est définie positive
car les réels w,, sont tous strictement positifs, et on a donc un produit
scalaire sur H,,.

Montrons maintenant que H,, est complet. Soit (Ag)ken une suite de
Cauchy de H,,. Posons, pour tout k € N, A = (ak n)n>1. Soit € > 0. 11
existe ko € N tel que, pour k, £ > ko, on ait ||Ar — Ay|| < &, c’est-a-dire

+oo
Z wn(ak,n - aé,n)2 < 52~
n=1

. e .
Pour n € N* fixé, on a |agn, — arn| < —— si k,€ > ko et on en

W,
déduit que la suite réelle (ax,,)ren est de Cauchy. Par conséquent, elle
converge et on note a, sa limite. En reprenant 'inégalité précédente, on
obtient, pour N € N et k,¢ > ko,

N
> wn (g, — arn)? <%
n=1

En faisant tendre ¢ vers +oo, on obtient, pour tout N € N* et tout
k 2 kOv

N
Z Wy (A — an)2 < e
n=1

L’entier k > kg étant fixé, cette inégalité vraie pour tout N > 1 montre
que la suite de la variable n de terme général ay, , — a,, appartient a H,,.
La suite (akn)n>1 = Ay étant dans Hy,, on en déduit que la suite A =
(an)n>1 appartient aussi & Hy,, puisque celui-ci est un espace vectoriel.
En faisant, pour k > kg, tendre N vers 400, on obtient

“+o00
Z wn(ak,n - an)2 < 52
n=1

c’est-a-dire ||Ax — A|| < e. La suite (Ay)gen converge donc vers A ce qui
montre la complétude de H,,.
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Cela s’applique aux exemples de I’énoncé en prenant respectivement
wp, =n%, wy, =1 ou wy, = % pour tout n > 1.

Dans ce qui précéde, on aurait pu en fait se contenter de traiter le cas
ol wy, = 1 pour tout n. En effet, il est facile de vérifier que ’application
qui @ (an)n>1 € Hy associe la suite (\/Wnan)n>1 est une isométrie entre
H,, et Hy (qui correspond au cas w, =1 pour tout n).

2. Cette question se propose de décrire le dual topologique de Hj.

e Soit b = (by)n>1 € H_1. Si a = (ap)n>1 € Hy, alors on a pour
tout N € N,

N N N

N

|n | b;
> lanba| =Y nlan| =< > n2ad| Y 2 < lallfioll,
n=1

n=1 n=1 n=1

d’apres l'inégalité de Cauchy-Schwarz. Cela montre que la série Z anbn
converge absolument. On peut donc définir une application A} par

+o00
a = (an)n21 cHy— Z anb, € R.

n=1

L’application A; est clairement linéaire. C’est une forme linéaire sur H; .
Ce qui précede montre en outre que, pour tout a € Hy, |Ay(a)| < |al||b]]
donc Ay est continue et ||Ap|| < ||b]|.

Montrons qu’en fait [|Ap|| = ||b]]. Pour N € N*, soit a = (an)n>1
bn, .
. PP = — <n< .
la suite définie par n =75 8 IsnsN La suite a ap-
a, =0 sinon.
N N b2
partient clairement & Hy, |la|] = > n2a2 = > 5 et
n=1 n=1"T
N N b2
Ap(a) = 3 anby, = > —%. On en déduit que
n=1 n=1 T
[As(a)l

IAs]l > =
= lall

Cela étant vrai pour tout N € N*, on en déduit que ||Ap|| = ||b]|]. Compte
tenu de 'inégalité démontrée précédemment, on a bien ||A| = ||b]|-

e Réciproquement, soit A une forme linéaire continue sur H;. Mon-
trons qu’il existe b € H_; tel que A = Ap. Pour trouver la suite b, il est
naturel d’appliquer A sur les suites e,, = (dpn)p>1 qui sont clairement
dans Hy. On pose donc b, = A(e,,) pour tout n > 1 et on va prouver
que la suite b ainsi définie est dans H_; puis que A = Ay,.

Soit N € N* et la suite a = (a,)>1 € H; définie par
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bn .
e sil<n<N

a, =0 sin > N.

Qg —

N
Autrement dit,onaa = %en. Par linéarité, on en déduit
n=1
N N N b2
Ala) = Z anA(e,) = Z anby, = Z n—"

n=1 n =1

=1 n
b2 N b2 |
Comme |ja]| = —,on adonc (/> = =
n=1" n=1"
b2

étant vrai pour tout N € N*, la série Z —Z converge et b appartient a
n
H_,.
Par construction les formes linéaires continues A et A, sont égales
sur le sous-espace vectoriel Vect(ep)n>1. Or celui-ci est dense dans Hj.

il Mz

A < JAJ. Cela
llall

+oo
En effet, si (a,)n>1 € Hy et € > 0, il existe N tel que Y. n2a? < e et
n=N+1

N
donc |la — > apen| < e. On conclut que A = Ay.
n=1
Conclusion. Sion note H) Pespace des formes linéaires continues sur
H; (i.e. le dual topologique de Hy), on vient de prouver que l'application

d:beH_;— Ay e H)

est une bijection isométrique.

3. Considérons la boule unité B = {(a,,) € Hy, Z nQafl < 1} de H;.

n>1

Comme H; est inclus dans Hy, c’est vrai a fortiori de B. Démontrons
que B est compacte dans Hy en montrant que B vérifie la propriété de
Bolzano-Weierstrass : de tout suite de B, on peut extraire une suite
convergente dans B pour la norme de Hy. Soit donc (Ag)ken une suite
de B. Posons, pour tout k € N, Ag = (agn)n>1-

e On a, pour tout k € N, [|A4[|> = Y n’ai, <1. On en déduit

n>=1

que, pour (k,n) € N x N* on a |ax,| < 1. Pour tout n € N*, la suite
(@k,n)ken est bornée. On peut donc en extraire une sous-suite conver-
gente. Montrons qu’il existe une extraction ¢ : N — N telle que, pour
tout n € N, la suite (%;(k),n)keN converge. On construit ¢ par extractions
successives, afin d’obtenir la propriété voulue pour toutes les valeurs de
n, en utilisant un procédé diagonal.

La suite (ag1)ken est bornée; il existe donc une suite extraite
(@, (k),1)ken convergente, ol ¢; est une application strictement
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croissante de N dans N. On construit ensuite une suite (¢p)n>1 d’ap-
plications strictement croissantes de N dans N telle que : pour tout
n € N*, (G4, 0p50...00, (k),n)keN converge. Les applications @1, @2, ..., ¢n
étant construites, on considere la suite (dy,opy0. .00, (k)n+1)keN-
Elle est bornée. On peut donc en extraire une suite convergente

(awomo___wno%“(k),n+1)k€N. D’ou l'existence de ¢, 1.
Posons, pour tout k € N, p(k) = @1 0...0¢k(k). Pour tout k € N,

o(k+1) = propz0...00k(pry1(k+1)) = propso...opp(k+1) > @(k),

donc ¢ est strictement croissante. Soit n € N*. Pour k > n, on a

k) =¢r10p30...00,0@p110...p0r(k).

L’application k — @41 0 ... 0 (k) est strictement croissante car

Ont10...0pg0pkr1(k+1) = ppr10...0pp(k+1) > ppr10...0pk(k).

On en déduit que, pour tout n € N*, la suite (ay,(r),n)ren est une suite
extraite de la suite (a«plo...oapn(k),n)kEN~ Elle est donc convergente. L’ap-
plication ¢ a donc les propriétés voulues.
e Notons, pour tout n > 1, a, = lim ay, ), et considérons la suite
k— 400

A = (an)n>1. Montrons que A appartient a B et que la suite (Ay ) )ren
converge vers A dans Hy. On a, pour (k,N) € N x N*|

N
> nPa2 ., < [Apuml? < 1.
n=1

N

En faisant tendre k vers +oo, on obtient Z nZai < 1, pour tout N &€
n=1

N*. Ceci montre que ana% converge et que Zn2a,21 < 1. Ainsi A

n>1
appartient a B.
Remarquons que pour toute suite a = (an)n>1 de Bet ng > 1, on a

1> anafL}n%Zai.

n>=ngo nz=ng

Soit € > 0 et ng € N* tel que ni < €. On a alors, pour tout (a,) € B,
0

Z ai < 2. On obtient en particulier, avec les notations précédentes,
n=ngo

pour tout k € N,

Z (an - atp(k),n)Q < 2 Z a% + 2 Z ai(k)’n S 462.

n>ng n>ng n>ngo
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’I’Lofl
O illeurs, li — 2 = 0. Il existe ko € N tel
na, par ailleurs,  lim n;l (an — Ayp(k)y,n) existe ko € N tel que,
no—

1
(an — a¢(k)7n)2 < €%, On a alors, pour k > ko,
—1

D (an = aymyn)* < 5%,

n>=1

pour k > ko, on ait
n

c’est-a-dire [|[A ) — Al = Z(an — ay(i)n)” < V/5e, la norme étant
n>1
celle de Hy. La suite (Ag)gen converge vers A dans Hy.
Conclusion. De tout suite de B, on peut extraire une suite qui
converge vers un élément de B, pour la norme de Hy. Donc B est compact
dans Hg. <

L’exercice suivant utilise le théoréme du point fize de Picard qui
est une des conséquences essentielles de la complétude et qui intervient
par exemple dans la démonstration du théoréme de Cauchy-Lipschitz ou
du théoréme d’inversion locale. Comme il n’est plus explicitement auz
programmes des classes préparatoires, nous en rappelons I’énoncé et la
démonstration. Le théoréme du point fixe s’énonce ainsi : si E est un es-
pace de Banach et f : E — E une application contractante (c’est-a-dire
k-lipschitzienne avec k € [0,1[), f posséde un point five unique. Toute
suite (un) de E vérifiant upy1 = f(uy) pour tout n € N converge vers ce
point fize.

En effet, supposons que [ est k-lipschitzienne et considérons (u,) la
suite définie par ug € E quelconque et up1 = f(uy) pour tout n € N.
On a pourn € N*, [[unt1 —un | = [[f (un) = f(un—1)[| < klltn —un_1] et
donc ||unt1 — unl| < k™||ur — uo||. La série de terme général u,+1 — uy,
est absolument convergente donc convergente, puisque E est complet.
Cela équivaut a la convergence de la suite (uy,). Comme f est continue,
puisque lipschitzienne, la limite de la suite (u,) est un point fize o de f.
Si B est un autre point fize de f, on a||f—all = || f(B8)—f(a)| < k||B—<l
et donc B = «, puisque k < 1. Ainsi f posséde un seul point fize vers
lequel converge (uy) pour toute valeur de ug.

3.19. Racine carrée d’un opérateur strictement accrétif

Soit H un espace de Hilbert réel. On note L.(H) Pespace des
endomorphismes continus de H muni de la norme d’opérateur et B
la boule unité ouverte de L.(H).
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1. Soit ¢ € B. Montrer que application ¢ : u %(u2 +1) de
L.(H) dans lui-méme posséde un unique point fixe dans B.

2. Soit f € L.(H) vérifiant (f(z),z) > a(z,z) pour un certain
réel a > 0. Montrer l'existence de g € L.(H) tel que ¢g> = f et
(9(x),x) = b{x,x) pour un certain b > 0.

(Ecole normale supérieure)

> Solution.

Pour alléger les notations, la norme d’opérateur sur £.(H) sera notée
avec seulement deux barres.

1. On a bien entendu envie d’appliquer le théoreme du point fixe et
on pour cela on va chercher une partie fermée de H (donc complete),
stable par ¢, sur laquelle la restriction de ¢ est contractante. Notons
r=|t]] < 1.Si|lul| <r,alorson a [Ju?| < ||ul|> <r? <ret o) <r.
Par conséquent la boule fermée B’ de centre 0 et de rayon r est stable
par . De plus si u et v sont dans B’ on a, grace aux propriétés de la
triple norme,

li(0) ~ ()l = 5lv* ~ el = Sllo(w — ) + (v~ we

[[o]] + [l
7‘“} _

ST

ull < rllv—ul,

de sorte que la restriction de ¢ & B’ est r-contractante. Le théoréme
du point fixe assure 'existence et 'unicité d’un point fixe a dans B'.
Montrons pour finir que ¢ ne peut pas avoir un autre point fixe 3 dans B.
Cela découle de la majoration ci-dessus, avec u = « et v = ( : on aurait

18 —al < 1811 + fledl I3 — al| et cela impose 3 = «, car 1811+ fledl <1.

2. On va essayer d’appliquer la question précédente et d’obtenir g
comme point fixe de ¢ pour un choix judicieux de ¢t. Comme ¢(g) = ¢
est équivalent & (g — Id)? = Id —t, on est tenté de poser t = Id —f. Le
probleme est que ce t n’est pas nécessairement dans B. Prenons plutot
t =1d—-Af avec A > 0 a choisir. Pour z € H on a

[t@)I* = llz = Af@)I* = [z = 2Xz, f(2)) + N[ f (@)
< (1= 2ax + N[ FI*) >

et [|t]| < \/1 — 2aX + A2||f]|?. Pour A assez petit, on a bien ||¢]| < 1. Soit
¢ le point fixe donné dans la question précédente, avec cette valeur de .

1
Il vérifie (c—1d)? = Id —t = \f. Posons alors g = W(Id —c). On a alors

g% = f et il reste & montrer que g vérifie la seconde condition imposée.
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Pour cela on écrit que ||¢|| < ||¢|| (comme on I'a vu dans la question 1).
Pour tout x € H, on a donc

le(@)II* = llz = Vag(@)|I* = l|lz]* + Mg (@)|* —2VA(z, g(2)) < 1t))* ||

ce qui implique 2v/A(z,g(x)) > (1 = [t1*)[«]® > (2aA = N[ f]*)l|=]*.
Clest le résultat attendu avec b = av/\ — %)\% I£1% <

Dans [’exercice suivant, on considére un espace de Hilbert H
possédant une famille totale dénombrable. Une famille totale est une
famille orthonormée engendrant un sous-espace dense. On démontre
qu’il est isomorphe a £y et que la boule unité de H est compacte pour la
convergence faible définie ainsi : une suite (x,) de H converge faiblement
vers x si, pour tout y € H, nll)rf@(mn,y) = (z,y). Par contre, comme

H est de dimension infini, la boule unité de H n’est pas compacte pour
la topologie d’espace vectoriel normé de H (qu’on appelle topologie forte
par opposition & lautre), d’aprés le théoréme de Riesz (exercice 2.1).

3.20. Compacité faible de la boule unité d’un espace de Hilbert

Soit H un espace de Hilbert. On suppose qu’il existe une suite
orthonormale (e;);>1 de H telle que Vect(e;);>1 soit dense dans H.
Soit (z,,)n>0 une suite d’éléments de la boule unité fermée de H.

1. Montrer qu'il existe une suite extraite (z,(n))nz0 et * € H
tels que, pour tout y € H, lim (w,(,),y) = (z*,y). Montrer que

n—-+oo
[[z*]] < 1.
2. Que peut on dire quand ||z*|| =17

(Ecole normale supérieure)

> Solution.

1. Siz* vérifie les conditions voulues,ona lim (), ;) = (z*, €;)
n—-+oo

pour tout i € N*. Pour (n,7) € N x N* on a |(zp, ;)| < [|zn] |le:]] < 1.
Pour tout ¢ € N*, la suite ({xy,€;))nen est une suite bornée de R, dont
on peut extraire une suite convergente. Par un procédé diagonal (cf.
exercices 3.3 et 3.18), on peut construire une extraction ¢ telle que,
pour tout i € N*, la suite ((Zy(n),€i))nen converge. On note alors x}

sa limite. Il s’agit de déterminer x* € H tel que, pour tout i € N*,
“+o0
(xz*,e;) = xF. On va montrer que le vecteur Y z}e; convient.
i=1
Soit = € H. Pour tout £ > 0, il existe N € N* et (Aq,..., Ax) € RN tel
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N N
que ||z — Y Ne;|| < e. Comme > (z,e;)e; est le projeté orthogonal de
i=1 =1
K3 1 N
x sur Vect(ey,...,en), on a a fortiori |[x — Y _(z,e;)e;|| < e. Pour tout
i=1
P
p =N, > (x,e;)e; est le projeté orthogonal de x sur Vect(eq,...,e,) et
i=1
N 7
> (x,e;)e; appartient & Vect(ey,...,e,) donc
i=1
P N
x— Z(:m eei|l < |lx— Z(m,e»ei <e.
i=1 i=1

Ainsi la série Y (z,e;)e; converge vers x et par continuité de la norme

N 2

Z(x, ei)e;

i=1

N

— 1 2
= NETOOZ<$7€Z) .

i=1

Jall? = lim
N—+oco

La série Y (z,e;)? converge donc et a pour somme | z|%.

—+o0
On a en particulier, pour tout n € N, Z(xw(n),eﬁz < 1 et donc,
i=1
N 1
pour N € N*, Z(xgo(n),ei)Z < 1. Par passage a la limite on obtient
i=1

N

> :v;“Q < 1. Comme ceci est vrai pour tout N € N*, on en déduit que la
i=1

+oo
série 3232 converge et que Y z? < 1.
i=1
Soit (A;)>1 une suite telle que Y A? converge. Posons, pour tout
N
NeN* Sy=)> Me;. Por NeN*et pe N, on a
i=1
N+p 2 Nip +oo
ISxp = SNIP =1 D Nesf| = D> A< DN
i=N+1 i=N+1 i=N+1

et comme Y \;2 converge, ceci tend vers 0 quand N tend vers +co. Ainsi

la suite (Sx) est de Cauchy donc elle converge, puisque H est complet.
+oo

On note z = Y Ase; sa limite. Par continuité du produit scalaire, on a,
i=1

pour tout ¢ € N*,

(x,e;) = NI_I)IEOO<SN,61'> =\,
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car (Sn,e;) = A; si N > 4. On a de plus, d’aprés ce qui a été vu plus

+oo +oo
haut, HxHZ = Z<$,€i>2 = Z )‘12

i=1 =

En appliquant ce qui précede a A; =z}, on voit que ’on peut poser
+oo

x* = > zfe;. On a alors (x*,e;) = xf, pour tout ¢ > 1 et [Jz*|| < 1. 11
i=1

reste a démontrer que, pour tout y € H, lim (2,0, y) = (z*,y). Pour
n —-+oo

tout (x,y) € H2, on a

+0oo +oo
() = 1 (Il + 9l = llo = ) = § (z vty e’ z<x—y,ei>2>
+o0 - Z
= Z<$’€i><y7€i>-

D’autre part les séries Y (r,e;)2 et > (y,e;)? convergent (et ont pour
somme ||z||? et ||y||? respectivement), donc on peut écrire, pour N € N*,
d’apres l'inégalité de Cauchy-Schwarz,

“+ o0 “+o00 +o0 “+o0
Z (z,e:)(y,e:)| < Z (z,e:)? Z (y, i) < [z Z (y,e)?.
i=N—+1 i=N+1 i=N+1 i=N+1

Soit y € H. On a pour n € N et N € N*|

|<xtp(n)ay> < >| - |<xap(n) *ay>|
N +oo
< D@y — 2% e (ys )| + llzpmy — 2l Do (vsei)?
=1 i=N+1
N +oo
< Z<$¢(n) —x*,ei>(y,ei> +2 Z <yaei>2a
i=1 i=N+1

car [Tyl < 1 et [[2¥]] < 1. Soit € > 0. On peut choisir N € N*
tel que la deuxieme somme soit < . Comme pour tout ¢ € N*, on a

lim (z,0,) — 2%, e;) = 0, la premiere somme tend vers 0 quand n tend
n—-+oo

vers +00. Ainsi, pour n assez grand, on a [(T,(n),y) — (z*,9)| < 2e. On
a donc hm ( Tom), ¥) = (2%, y).

On a demontre que de toute suite de la boule unité fermée de H, on
peut extraire une suite qui converge faiblement. Autrement dit, la boule
unité de H est compacte pour la topologie faible.

Par contre, (x,,) ne posséde pas nécessairement de sous-suite conver-
gente, car la boule unité de H n’est pas compacte, puisque H n’est pas
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de dimension finie. Si on considére la suite (ey), elle converge faible-
ment vers le vecteur nul. En effet, pour tout y € H, on a liril (en,y) =
n—-—+0oo

0= (0,%), car la série Y (e,,y)? converge, mais (e,) ne contient aucune
sous-suite convergente, puisque, pour i # j, |le; — e;j|| = v/2.
—+o0
Il ressort de ce qui précéde que tout élément x de H s’écrit > (x, e;)e;
i=1
et qu’étant donnée une suite (x;);en+ de réels, il existe x € H tel que,
pour tout i € N*, (x,e;) = x; si, et seulement si, > x? converge. L’ ap-
plication x — ({x, e;))ien+ est un isomorphisme d’espaces de Hilbert de
H sur I’espace vectoriel 12 des suites réelles de carré sommable. Cest en
effet un isomorphisme d’espaces vectoriels qui respecte le produit scalaire
+oo
car, pour (xay) € H27 <-T, y> = Z <Z‘7 €i><ya €i>'
i=1
2. On a, pour tout n € N,

”zga(n) - ‘r*Hz = ”"L‘c,o(n)”2 + ”‘T*”2 - 2<I<p(n)7x*> < 2 - 2<Igo(n)ax*>'

D’apres la question précédente, on a lim (x,,),2*) = (z*,2%) =1
n—-+oo

donc ngr_ir_loo 2 —2(xyny, x*) = 0 et a fortiori

La suite (x,(,)) converge vers z* pour la norme de H. <

3.21. Parties faiblement bornées

Soit E un espace de Hilbert et A une partie de E. On considere
la propriété :

Ve € E, Je; € Ry, Va € A, [(z,a)| <cp (%)

1. Donner des exemples de parties A vérifiant ().

2. On veut prouver que si A vérifie (), alors A est bornée. Le
démontrer si E est de dimension finie.

3. On suppose E de dimension infinie et on raisonne par ’ab-
surde en supposant qu’il existe A non bornée qui vérifie (x). Soit
(my)k>1 une suite de réels positifs. Construire par récurrence deux
suites (zx)k>1 € BV et (ap)is1 € AN telles que |jzx]| = 1,
[(xk, ar)| = mg et L Vect(z1,...,2k-1,a1,...,ax—1) pour tout k.

4. Conclure.

(Ecole polytechnique)
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> Solution.

1. Pour x € E et a € A l'inégalité de Cauchy-Schwarz permet de
majorer |(z,a)| par ||z||||a||, donc toute partie A bornée vérifie (x). On
va voir dans la suite de 'exercice que la réciproque est vraie.

2. Supposons E de dimension finie n et considérons (ej,es,...,e,)
une base orthonormée de E. Soit A une partie vérifiant (x). Pour tout

a€Aona
n n
lall? =3 esa)? < 32,
i=1

i=1
ce qui prouve que la partie A est bornée.

3. On suppose que E n’est pas de dimension finie et qu’il existe une
partie A non bornée vérifiant (x). Comme A n’est pas bornée, on peut

trouver a; € A tel que ||a;|| > my. En prenant z; = Ha—ln, ona|zi|| =1
ai
et |{(x1,a1)| = ||lar|| > m1.
Supposons 1,...,Tr_1,0a1,...,a0r_1 construits avec k > 2. Posons
F = Vect(x1,...,25—1,a1,...,a—1). Comme F est de dimension finie,

on sait que H = F @ F+. Notons p (resp. ¢) la projection orthogonale
sur F1 (resp. F). Imaginons que pour tout vecteur unitaire = de F*+ et
tout vecteur a € A, on ait |(a,z)| < my. On a alors, par homogénéité,
|(a,x)| < mgl|lz|, pour tout z € F+. On en déduit, pour tout a € A,

lp(a)|* = {a. p(a)) < mxlp(a)ll et done [lp(a)]| < mx

(c’est vrai si p(a) = 0 car my > 0). D’autre part, pour tout x € F et
tout a € A, on a |[{x,q(a))| = [{(z,a)| < ¢, donc la partie ¢(A) de F
vérifie 'hypothese (x). Puisque F est de dimension finie, elle est bornée,
disons par une constante M, d’apres la question précédente. On a alors
pour tout a € A,

lall* = llp(a) I + llg(a)[|* < mi; + M,

ce qui est impossible puisque A n’est pas bornée. On peut donc trouver
7}, unitaire dans F* et a;, dans A tels que |(zy,ax)| = my. Cela acheve
la construction des deux suites par récurrence.

4. On construit un élément = de E que 'on définit comme somme
d’une série et qui met en défaut I’hypothese (x). On consideére une suite

(xk, ar)>1 comme dans la question précédente, les my, étant & choisir et
+oo

Tk
onposexr =Y.

w2 - Cette série est convergente car absolument conver-
k=1

n

Tk
gente et E complet. On note s,, = kzl 2

> p, (Sn,ap) = (Sp, ap). En faisant tendre n vers 4+o0, on obtient

la somme partielle. On a, pour
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P
1
(x,ap) = (Sp, ap) = (T, ap).
k=1

On en déduit

1 Ly m, ¢

o) > gl = X pllemanl| > 72— 3 G
k= k=1

Pour avoir |(z, ap)| > p pour tout p € N*, il suffit de prendre
p=l
mp:p2 <p+Z]:2k>
k=1

C’est possible. 11 faut prendre my = 1, construire a; et z; tels que

[(x1,a1)] > 1, puis une fois les suites (:ck) et (ax) étant construites
—1
jusquau rang p — 1, choisir m, = p? | p+ Z
=1

c“’“ et construire z,
et a, comme il est expliqué dans la questlon precedente. On a alors
|{(z,a,)| = p pour tout p > 1. Le vecteur = apporte donc la contradiction
recherchée.

Conclusion. Les parties A de E qui vérifient (x) sont les parties
bornées. <

On peut noter que le résultat de l’exercice est une conséquence du
théoréme de Banach-Steinhaus (exercice 3.13). En effet, considérons,
pour tout a € A, la forme linéaire T, : © — (x,a). Elle est continue,
de norme ||a||. Par hypothése, pour tout x € E, la famille (T4 (z))qca est
bornée. On en déduit que la famille (Ty)aea est bornée dans L.(E,R),
c’est-a-dire que A est borné.

Il n'est pas difficile de montrer que si (eq,...,e,) est une base or-
thonormée d’un espace euclidien E et (e1,...e,) une famille telle que

n

3 llex —exl|? < 1, alors la famille (g1, ...€,) est encore une base de E.

En effet, supposons qu’il existe des réels non tous nuls A\i,...,\, tels
n

que > Xig; = 0. On a alors, en utilisant inégalité de Cauchy-Schwarz,
i=1

n n 2
IS Al = 1Moo < (3 e o
i=1 1=1
n n

n
SO N e —esl < DA
1 i=1

i=1 i=
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n n
C’est impossible car || S Ne;||> = Y. A2, L’énoncé suivant généralise ce
i=1 i=1
résultat a une famille totale d’un espace de Hilbert (une famille totale
est une famille orthonormée qui engendre un sous-espace dense).

3.22. Suite proche d’une suite totale

Soit H un espace de Hilbert.

1. Soit G un sous-espace de H, dense dans H, et f : G — H
linéaire et continue. On note j l'injection canonique de G dans H et
on suppose ||j— f]| < 1. Montrer qu’il existe un unique prolongement
linéaire continu de f & H. On le note g. Montrer que g est bijective
et que g_1 est continue.

2. Soit (en)n>0 une suite orthonormale de H qui engendre un

sous-espace dense. Soit (€,)n>0 une seconde suite de H telle que
+Zoo llen —enll? < 1. Montrer que la suite (£,,),>0 est libre et qu’elle
g;gendre un sous-espace dense dans H.
3. Le résultat précédent reste-t-il vrai si +Zoo llen —enll* <17
n=0

(Ecole polytechnique)

> Solution.

1. La construction qui suit est proche de celle de 'exercice 3.8, ol
on prolonge une application uniformément sur un sous-ensemble dense.

Soit z € H. Puisque G est dense dans H, il existe une suite (z,)
d’éléments de G qui converge vers x. Si le prolongement g de f existe,
on a nécessairement g(z) = lim g(x,) = lim f(z,), ce qui montre

n —oo n —oo
I'unicité de g.

On démontre l'existence. Avec les mémes notations, la suite (x,,) est
de Cauchy et pour tout (n,p) € N* ona || f(z,)—f(zp)|| < | flzn—2p]-
La suite (f(z,)) est donc aussi de Cauchy et, comme H est complet, elle
converge (dans H). Montrons que la limite ne dépend pas du choix de la
suite (x,) de G convergeant vers x. Si (y,) converge également vers z, la
suite (2, —y,) converge vers 0 et comme || f(z,,)— f ()| < I fMZn—ynll,

la suite (f(x,) — f(yn)) converge vers 0 : les suites (f(x,)) et (f(yn))
ont méme limite. On peut donc poser g(x) = 11111 flzp).
n—-—+oo

L’application g ainsi définie prolonge f, car si z € G, on peut prendre
pour (x,) la suite constante égale & x et on trouve alors g(z) = f(x).
Montrons que g est linéaire. Soit (z,y) € H?, (z,,) et (y,) deux suites de
G tendant vers x et y respectivement et A € R. La suite (Az,, + y,) est
a valeurs dans G et converge vers Ax + y, donc par définition
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gAz+y)= lim fQz,+y,) lUm Af(zn)+ f(yn) = Ag(z) + g(v),
n—-+o0o n—-+4o00

par linéarité de f et de la limite.

Enfin, si (:I:n) est une suite de G convergeant vers x, on a, pour
tout n € N, || f(zn)]| < ||fllllzn]. Par passage & la limite et grace a la
continuité de la norme, on en déduit ||g(z)| < || f]l]lz]. Ceci étant vrai
pour tout € H, on en déduit que g est continue et que |gf < |If]l-
Comme g prolonge f, sa triple norme est plus grande et | g| = || f]-

Montrons que g est bijective. Exploitons pour cela I’hypothese sur
j— f.Soit x € H et (z,,) une suite de G convergeant vers z. On a,
pour tout n € N, [|zn, — f(zn)[| = [li(zn) — f(@n)| <7 — Fllllzall. Par
passage a la limite et en utilisant la continuité de la norme, on obtient
lz = f@)l <5 = fllllzll. On a done [[1du —gfl < [l7 — fIl < 1. On sait
que H étant complet, ’ensemble des endomorphismes continus de H,

muni de la norme triple associé est lui aussi complet. Posons h = Idg —g
—+oo
et k = Y A" Cette série converge absolument, car pour tout n € N,

n=0
IE™ < [I2)™ et || < 1. Donc k est un endomorphisme continu de H.
N N
Pour Ne Nonago Y h" = (Idg—h)o Y A" =Idg—h""!. Comme
n=0 =0

hNF! tend vers 0 quand N tend vers +o0o, on en déduit g o k = Idy.
On montre de méme que k o g = Idy. Ainsi g est bijective et k = g~
L’application ¢g—! est donc continue.

2. Notons G le sous-espace vectoriel engendré par la suite (e, ). Par
hypothese, G est dense dans H. Il existe une unique application linéaire
f de G dans H telle que, pour tout n € N, f(e,) = &,. Montrons que

j — [ est continue de norme strictement inférieure & 1. Soit =z € G. Il
N

existe N € N et (Mg, ..., An) dans RN*! tels que z = . A\,e,. On en
n=0
déduit que

On majore [|j(x) — f(z)]* :

17 (@)= f(@)]* < (ZIA | llen — 6n|> (gﬁ) (gllen—enl2>7

d’apres l'inégalité de Cauchy-Schwarz. La suite (e,) étant orthonormale,

N
ona Y A2 =|xz|%. On obtient donc
n=0
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“+o0
17 () = f@)II* < [l (Z llen —€n||2> < 2l <Z len —6n||2> :
n=0
On en déduit que j — f est continue de norme triple inférieure ou égale

—+oo

S len —enl]l? < 1.

n=0

L’application j étant évidemment continue, de norme 1, on en déduit
que f = j — (j — f) est continue. On peut appliquer le résultat de la
question 1. et considérer le prolongement g de f a H. L’application g est
bijective donc injective. A fortiori, 'application f est injective. La suite
(en) qui est I'mage de la suite libre (e,,) par une application injective est
elle-méme libre.

Soit y € H. Comme g est bijective, il existe x € H tel que y = g(x).
Soit (z,,) une suite de G convergeant vers x. Par définition de g, on a
y = g(z) = ngrfoo f(z,). Tout élément de H est limite d’une suite de

f(G). Donc f(G) est dense dans H. Mais par définition de f, f(G) =
Vect(en)nen. La suite (g,) engendre bien un sous-espace dense dans H.

+o0
3. Montrons que la condition Y |, — €,]|> < 1 ne suffit pas en
n=0
donnant un contre-exemple. On choisit g = 0 et pour n > 1, €, = e,.
+oo
On a Z llen —enl|? = 1. On voit déja que la famille (g,,) n’est pas libre.

Posons F = Vect(en)nen = Vect(en)nen+. Supposons qu’il existe une
suite (z,,) de F qui converge vers ey. Comme eq € F+, on a, pour tout
n € N, {(ep,z,) = 0. Par continuité du produit scalaire, on en déduit,
en faisant tendre m vers Uinfini, (eg,eq) = 0 et donc ey = 0. Ainsi eq
n’appartient pas F et F n’est pas dense dans E. <

3.23. Condition suffisante pour avoir un inverse continu

Soit H un espace de Hilbert complexe et f un endomorphisme
continu de H tel que (f(x),x) soit réel pour tout z et tel qu’existe
a > 0 vérifiant (f(z),z) > a||z||* pour tout = € H.

1. Montrer que Im f est fermé dans H et que (Im )+ = {0}.
<

2. En déduire que f a un inverse continu et que || f

(Ecole polytechnique)

> Solution.

1. Notons que f est injectif car si f(z) = 0 alors ||z|| =0 et x = 0.
Montrons que Im f est fermé de maniere séquentielle. Soit (yn)n>0 une
suite de Im f qui converge vers un point y € H. Pour tout n, on note x,
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Pantécédent de y,, par f. On montre que la suite (z,,)n>0 est de Cauchy.
Pour n et p dans N, on a en vertu de I'inégalité de Cauchy-Schwarz,

allen = 2pl* < (Yo = Y@ = ) <llyn = vpll N2n — 2]

1
Il en découle que ||z, — xp|| < —||yn — yp|| pour tout couple (n,p) € N?
a

(c’est trivial dans le cas ou z,, = x,). Comme la suite (y,)n>0 est de
Cauchy, il en est de méme de la suite (z,)n>0, et celle-ci converge. Si on
note z sa limite, la continuité de f montre que f(z) = y et y € Im f.
Donc Im f est fermé.

Siz € (Im f)* alors z L f(z) donc aflz||? =0 et z = 0.

2. On utilise le théoreme de projection sur un convexe fermé pour
démontrer que Im f = E (exercice 3.17 question 3). Comme Im f est un
sous espace fermé de E, on a E = Im f @ (Im f)* = Im f, d’aprés la
question 1. Comme f est injective, c’est un automorphisme.

Si z € H, alors of f~H(2)|1* < (z, f~'(z)) < If7 (@] [|=]| et donc

If~ ()] < —|l=|. Ainsi f~! est continue et ||f~1] < é- <
a

3.24. Endomorphismes inversibles & gauche dans un espace de Hilbert

Soit E un espace de Hilbert complexe. On note £L.(E) I’ensemble
des endomorphismes continus de E et

G(E) = {u € L(E), e L(E), vou=ids}.

1. Donner des exemples d’endomorphismes appartenant & G(E).

2. On prend E = (%(C). Montrer que l’application S
(Zn)nz0 — (0,20, 21, ..., Tn,...) appartient & G(E).
3. Soit u € L.(E). Montrer I’équivalence entre :
(i) u € G(E);

(1) 3C > 0, Vz € E, ||u(x)| = C||lz| ;
(791) Imwu est fermée et la corestriction @ de u sur Imu est
inversible d’inverse continu.
4. Montrer que G(E) est un ouvert de £L.(E).
5. Soit T I'endomorphisme de ¢*(C) défini par T((zy)n>0) =
(Tn+41)n>0- Déterminer A = {A € C, T — A\Idg € G(E)}.
(Ecole polytechnique)

> Solution.

1. Tout élément u de L.(E) inversible et possédant un inverse
continu appartient & G(E) (prendre v = u~!). En fait, on peut démontrer
que si E est un espace de Banach tout isomorphisme continu de E possede
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un inverse continu (c’est le théoreme de Banach). Si E est de dimension
finie, G(E) est égal au groupe linéaire de E.

2. E est muni de la norme définie par ||(z,)n>0] =

tout (z,)n>0 € 2(C), on a

1S((zn)n0)

+oo
Y llzall? = ll@n)azoll-
n=0

L’endomorphisme S est donc continue et ||S|| = 1.
Soit T lendomorphisme de E défini par T((zn)n>0) = (Tn+1)n>o0-
Pour tout (z,)n>0 € £*(C), on a

“+ o0
IT((@n)nz0)ll = | D lnll? < [[(zn)nzoll
n=1

L’endomorphisme T est continue et | T|| < 1. Il est clair que ToS = Idg.
On en déduit que S appartient & G(E).

3. Montrons que (z) implique (7). Soit u € G(E) et v € L.(E) tel
que v o u = idg. Notons que |Jv|| # 0, car v ne peut étre Papplication
nulle. On a, pour tout =z € E,

1
2]l = llv o u(z)|| < vllllu(z)|| et donc [u(z)|| = Tl ],
ce qui est la propriété voulue, avec C = ﬁ
v

Montrons que (iz) implique (4i7). Pour montrer que Imu est fermée,
considérons y, limite d’une suite d’éléments de Im u. Il existe une suite
(Tn)nen & valeurs dans E telle que lirf u(zy,) = y. Par hypothese, on
n—-+oo
a, pour tout (n,p) € N2,

1
lzn = @pll < Gllul@n) = ul@p)ll

La suite (u(xy,))nen étant une suite de Cauchy, puisqu’elle converge vers
y, on en déduit que la suite (z,)nen est également une suite de Cauchy.
Comme E est complet, elle converge vers x. On a alors, puisque u est
continue,
= 1. = .
y=lm_ u(z,)=uz)

Ainsi, y appartient & Imu, ce qui démontre que Im u est fermée.
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Notons ensuite que u est injective. En effet, u(z) = 0 implique
C|lz|| = 0 et donc = = 0, puisque C > 0. La corestriction de u & Imwu
réalise est donc un isomorphisme de E sur Im u. Montrons que sa bijec-
tion réciproque w est continue. Soit y € Imu et x € E tel que y = u(x).
On a par hypothese

1 s 1
lzl < Gllu@)l, ~ cest-a-dire Jw(y)] < Fllyll

Cela montre que w est continue.

Supposons enfin que (7i7) est réalisée. On reprend les mémes notations
et on note w l'inverse de w qui appartient & L£.(Im f). Pour étendre w &
E, il suffit de composer w et la projection orthogonale p sur Im u. Celle-ci
peut étre définie, car E est complet et Im u fermée (cf. exercice 3.17), et
elle est continue. On pose donc v = w o p. C’est un endomorphisme de
E, continu, car p et w le sont. Enfin, pour tout z € E,

vou(z) = wo p(u(e)) = wlu(z)) = wou(z) =z,

par définition de w. Ainsi, v a toutes les propriétés voulues, ce qui achéve
la démonstration de I’équivalence des trois propriétés.
4. Soit u € G(E). 1l existe C > 0 tel que ||u(z)|| = C||z| pour tout

z € E. Soit f € L.(E) tel que ||f —ul] < g On a, pour tout « € E,
[f(x) —u(x)]| < % et donc

Q

IF @) = llu@)] = 1 (2) = u(@)l| = 3 ll2].

La question précédente montre que f appartient & G(E). Ainsi G(E)
contient la boule fermée de centre u et de rayon PR On en déduit que
G(E) est un ouvert de L.(E).

5. e Nous avons démontré dans la question 2 que T appartient
a L.(E). Il en est de méme de T — A1dg, pour tout A € C. Soit A € C,
7 = (@n)0 € B = 6(C). On aalors |(T-Adg)(@)]| > N[l - | T(@)]|
Nous avons démontré précédemment que ||T(z)|| < ||z]|. On en déduit
que

[(T = Aldg)(@)[| = (|A] = D)[=]|-
Si |A| > 1, ceci montre que T — A\Idg vérifie la propriété (ii), et donc que
T — A1dg appartient & G(E).

e Montrons qu’a contrario, si |A| < 1, alors T — AIdg n’appartient
pas & G(E) car ne vérifie pas (i7). Il faut choisir = tel que T(x) — Az soit
petit sans que x ne le soit. Soit ng € N et = (x,,)nen+ la suite définie
par

AT sin < mng
Tp = .
0 sin > ng.
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Onaxzpyr — Az, =0sin #nyg—1et xp, — Apy—1 = —A". On en
déduit
[T (z) = Az[| = [A™].

On calcule ||z]|. On obtient

) noz—l ) no si |)\| =1
=" = R e T el DV :
= T si || # 1.
1 .
— si |Al=1
On obtient w = 77;?0 5 Dans tous les
& APVEIZ AR < 1
T(z) - A o
cas, on a lirg W = 0. Ceci est contradictoire avec ’existence
no—r+0oo

de C > 0 tel que, pour tout x € £2(C) || T(x) — Az|| > C||z||. La propriété
(#i) n’est pas vérifiée et T — AIdg n’appartient pas & G(E).
Conclusion. T—\Idg appartient & G(E) si, et seulement si, [A| > 1. <






Chapitre 4

Intégrales généralisées

La théorie de lintégration sur un intervalle quelconque actuellement
au programme des classes préparatoires se rapproche de celle de Le-
besgue mais en se limitant au cadre restreint des fonctions continues par
morceauz. Cela permet toutefois de disposer, en l'admettant, du puis-
sant théoréme de convergence dominée dont il est aisé de déduire les
théorémes indispensables a I'étude des intégrales a paramétre (continuité,
dérivation sous le signe intégral).

Historiquement, Lebesgue est amené a proposer une nouvelle théorie
de lintégrale pour dépasser les limites de celles de Riemann que l’on
peut résumer ainsi : les difficultés dans la définition des intégrales dites
< impropres » (ou < généralisées > i.e définies sur un intervalle quel-
conque), les hypothéses trop contraignantes des théorémes de convergence
(qui nécessitent une convergence uniforme) et le champ trop restreint
d’application de lintégrale (qui est inadaptée a des fonctions < trop
discontinues > comme la fonction indicatrice de Q N [0,1]). En 1902,
Lebesgue dans sa these délaisse l'idée de prendre une subdivision du seg-
ment [a,b] pour plutét considérer la mesure des images réciproques des
éléments d’une partition de l’ensemble des valeurs de f. Cette nouvelle
intégrale prolonge celle de Riemann, s’applique a une classe plus vaste de
fonctions* et permet de disposer d’un théoréme de convergence auz hy-
potheéses nettement plus faibles que la convergence uniforme : une conver-
gence simple et la domination par une fonction intégrable permettent

d’écrire
lim = [ lim f,.
C’est le théoréeme de convergence dominée.

Précisons le vocabulaire et les notations utilisés ici. Si 1 est un inter-
valle quelconque et f : 1 — R une fonction continue par morceauz on dit
que f est intégrable (ou sommable) sur 1 s’il existe M > 0 tel que pour
tout segment K contenu dans I on a /K || < M. On définit dans ce cas
Vintégrale sur 1 de f en commencgant par le cas ot f est positive (par

/f = Sup/ f ot K parcourt les segments de 1) et en séparant partie
I Kc1/K
positive/partie négative dans le cas général (et méme partie réelle/partie

imaginaire pour une fonction d valeurs complezes).

1. Mais il n’est pas question d’en profiter ici...
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La plupart du temps lintégrabilité d’une fonction f est simplement
prouvée par le théoreme de comparaison suivant : supposons par exemple
I=a,b] avec a < b < 400 et soit g : I — R une autre fonction continue
par morceaux ; si g est intégrable sur 1 et si on a f(x) = O(g(x)) lorsque
x — b alors [ est aussi intégrable sur 1. Bien entendu le résultat demeure
si f est négligeable devant g ou équivalente a g en b. Lorsque l'intervalle
I est ouwvert, I = ]a,b[, ou coupe en deux et on étudie l'intégrabilité au
voisinage de a et au voisinage de b. Dans bien des cas les fonctions de

référence x — 1 sont utiles : une telle fonction est intégrable au
xa

voisinage de +oo (respectivement 07 ) si et seulement si o > 1 (respec-

tivement o < 1).

Restons dans le cas ot 1 = [a,b] avec a < b < +00. Si f est intégrable
sur 1, le calcul de son intégrale se rameéne a une limite puisque

f(t)dt = lim / f@t)
la,b] x—b—

1 est important de noter que la limite de droite ci-dessus peut exister
sans que [ soit intégrable sur [a,b]. On parle alors d’intégrale (semi)-

convergente® et la limite est notée /b f(t)dt : la notation /If sera ex-
clusivement réservée au cas ot la forfction f est intégrable sur 1.

Dans le premier exercice qui suit il s’agit clairement d’intégrales
semi-convergentes.

4.1. Existence d’une intégrale

Soit a < bdans R, f : R — R continue. On suppose que f admet

—+oo
une limite finie ¢ en —co et que /0 f existe. Justifier 'existence

et calculer /_+: (fla+x)— f(b+x))da.

(Ecole polytechnique)

> Solution. 5
Soit A,B € R. Notons Ix g = /A (fla+z)— f(b+ z))dx. Par deux
changements de variables affines, on a

B+a B+b B+a A+b
Iap = / I R / /.
Ata A+b B+b Ata

Le premier terme tend vers 0 quand B tend vers 'infini puisque

2. 11 s’agit de la notion d’intégrale généralisée au sens de Riemann anciennement
au programme des classes préparatoires.



4.2. DOMAINE DE CONVERGENCE D’UNE TRANSFORMEE DE LAPLACE 177

B+a “+o00 “+o0
[ A
B+b B+b Bta B—too
Quant au second, il converge vers £(b — a) quand A tend vers —oo. En
effet, prenons € > 0. Comme lim f = /¢, il existe M € R tel que pour
—00

x<M,onal—e< f(z) <l+e. SiA estsuffisamment proche de —oo,
le segment [A + a, A + b] est contenu dans |—oo, M] et par intégration de
I’inégalité, on obtient

A+b

€(b—a)—(b—a)s<A+ f<lb—a)+ (b—a),

+oo
ce qui prouve le résultat. On conclut que /7 (fla+z)— f(b+z))da

existe et vaut (b —a). <

Au cours de ce chapitre le lecteur rencontrera plusieurs exercices sur
la transformée de Laplace. Si f est une fonction continue par morceaus
sur Ry, sa transformée de Laplace est par définition la fonction Lf :

+oo
T —> /0 f(®)e=%tdt. Par le théoréme de comparaison, il est clair que

si lintégrande g(z,t) = f(t)e™** est intégrable pour une certaine valeur

g, alors il l’est pour tout x > xq. Ainsi, s’il est non vide, l’ensemble des
valeurs de x telles que g(x,-) soit intégrable sur Ry est un intervalle non
magoré. Sa borne inférieure peut étre appelée l’abscisse de convergence
absolue de la transformée de Laplace. Mais on peut aussi s’intéresser aux
valeurs de x pour lesquelles l'intégrale est seulement semi-convergente.
L’exercice suivant montre qu’on obtient encore un intervalle non majoré
(contenant évidemment le précédent).

4.2. Domaine de convergence d’une transformée de Laplace

Soit f : Ry — R une fonction continue et a € R. On sup-

“+oo
pose que /0 f(t)e~etdt existe. Montrer que pour tout z > a,

+oo
/0 f(t)e tdt existe.

(Ecole normale supérieure)

> Solution.

On a la majoration suivante : pour tout ¢t > 0 et tout = > a,
|f(t)e =t < |f(t)|e” " sibien que sit — f(t)e " est intégrable sur R,
il en va de méme pour t — f(t)e~*! par le théoréme de comparaison.
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—+o0
Démontrons que c’est encore le cas si /0 f(t)e™ et dt existe sans que

t — f(t)e~ % soit intégrable. Comme f est continue, I'application

X
F:XeRy+— / f(t)e~*dt est de classe C'.
0

Soit X > 0 et £ > a. On note u = x —a > 0. Pour X > 0, par intégration
par parties, on obtient

x —xt _ x / e—ut _ e—ut X U x e—ut
/Of(t)e dt—/o F'(t)e"dt = [F(t)e "] + /OF(t) dt
= e "X 4y h F(t)e “dt
=F(X) + /0 .

Comme F admet une limite finie et est continue sur R, elle est bornée
sur Ry et par théoreme de comparaison ¢ — F(t)e "' est intégrable

X
sur Ry. Ainsi, la limite quand X tend vers +oo de /0 f(t)e ®tdt existe

et vaut
+oo +oo
/ ft)e *tdt = u/ F(t)e "'dt. <
0 0

Le lecteur pourra retenir que l’intégration par parties est une tech-
nique trés efficace pour transformer des intégrales semi-convergentes en
des intégrales absolument convergentes. Il y a plusieurs exemples de cela
dans la suite.

Nous poursuivons ce chapitre par quelques exercices sur des questions
d’intégrabilité.

4.3. Question d’intégrabilité (1)

Soit f : R — R continue et intégrable. Pour = # 0, on pose
glx)=f (x - l) Montrer que g est intégrable sur |—oo, 0[ et sur
x
10, +o00] et que

/0 g(x)dz + /OJFOC g(x)dz = /+OO f(x)dx.

—00 —00

(Ecole polytechnique)
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> Solution. 1
La fonction ¢ : z +— z — - est de classe C sur R* et sa

dérivée z — 1 + est strictement positive. Elle induit donc un

z?
C*>°-difféomorphisme strictement croissant ¢; de RY sur p(R%) = R
et un autre C*°-difféomorphisme strictement croissant ps de R* sur
e(R*) =R.

Ainsi, d’apres le cours, g est intégrable sur R* (resp. R*

)
ment si, la fonction y — f(y) ((pfl)/ (y) (resp. y — f(y) ( ) (y))

est intégrable sur R. Or si y € R, x = ¢; *(y) et 2’ = ;' (y) sont les
racines distinctes du trinéme X2 — yX — 1. Ainsi, on a

_ytVyrHd YoVt
2

si, et seule-

_YTVITTE o,
. 2

1 /
Comme (cp;) >0 pouri=1,2et

d -1
o e W) ==
/
on en déduit que pour tout y € R, 0 < (@;1) < 1 et finalement,

0< 17wl () ) < 7).

Comme f est supposée intégrable, le théoreme de comparaison assure
!/
que y — f(y) (gpi_l> (y) est intégrable pour i = 1 et ¢ = 2. On conclut
donc que g est intégrable sur R et sur R* .
Toujours d’apres le théoreme de changement de variable pour les
fonctions intégrables, on peut écrire

[ o [ gar= [ 1) () Gu+ [ 50 (e3) Gray

= /Rf(y) ((Wfl)l(y) + (802_1)/(34)) dy

- /R f(y)dy. <

L’énoncé suivant reprend cette question et la complete.
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4.4. Question d’intégrabilité (2)

Soit h : R — R continue a support compact.

2
Tr° —

1. Onpose p:z+——h ( ) Montrer que ¢ est continue a

X
support compact. Montrer que /}R h = /}R ®.
2. Soit maintenant, pour a; < by < as < -+ < b1 < ap,

p:x—h ( (g(f__b?)l?::ém__bez) ) Montrer que /R h = /Rgp.

(Ecole normale supérieure)

> Solution.
1. Notons que ¢ se prolonge par continuité en 0 (avec ¢(0) = 0)
2

x_ ! tend
vers +00 en +00 et vers —oo en —oo, ¢ est nulle pour x au voisinage de
400 et au voisinage de —oo : elle est donc a support compact. Le reste
de la premiere question correspond a l'objet de ’exercice précédent.

2. On a traité dans la question précédente le cas a1 = —1, by = 0
et as = 1. On va étendre ce résultat. Posons tout d’abord by = —o0 et
b, = +00. Pour les mémes raisons que précédemment, au voisinage de
b;, la fonction ¢ est nulle et /R h a donc un sens. On va procéder au

découpage suivant
Y= / ®.
/l\% ; bi_1

X—a1) - (X—an)
(X =b1)- - (X =bn-1)

o= frona- 5

by
On va, dans chacune des intégrales /b h(F(x))dz, faire le changement
i—1

puisque h est nulle au voisinage de +o0o et —oo. Comme

Considérons la fraction rationnelle F = - On peut

écrire

de variable y = F(x).
Pour z tendant vers 400 (ou —00),onaF(z) ~ z et donc lim F=+4c0

et hmF = —00. Soit 1 < i < n — 1. Les limites en b ; et b sont +oo

et Sont opposées 'une de l’autre, car seul le facteur © — a;_1 change de
signe. Nécessairement, la limite de F est +o0o en b et —oo en bf. On
en déduit par le théoreme des valeurs intermédiaires que tout y € R
posséde au moins un antécédent par F dans chaque intervalle |b;_1, b;]
pour 1 <7 < n.

De plus, la fraction F se décompose en éléments simples de la maniere
suivante
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F(X

(X) = e

avec C,aq,...,a,-1 € R. Compte—tenu des limites en b et by, les
n—1 .

sont strictement négatifs. Comme F/ = 1— (Xai’b)w il apparailt que
i=1 Y

la dérivée de F reste strictement positive sur le domaine de définition.
En particulier, F est strictement monotone sur chaque intervalle |b;_1, b;|
et y possede un unique antécédent dans cet intervalle. Notons le z;.
L’application z — F(z) est un C*°-difféomorphisme de ]b;_1, b;[ sur R
puisque F est de classe C* sur cet intervalle, strictement croissante et sa
dérivée ne s’annule pas. Les fonctions y — x; sont C* et on est autorisé
a employer la formule de changement de variable dans l'intégrale :

Lo=2 [ =3 [ n'

()

n .
Calculons Y % Si x est dans R\{by,...,b,—_1}, "équation F(z) =y
i=1 4Y

équivaut a

(z—a1) - (z—an)—ylx—>b1) - (x —b,—1) =0.

C’est une équation polynomiale en = de degré n et compte-tenu de ce
qui précede, il y a exactement n racines (distinctes) qui sont x1, ..., Zy,.
Or la somme 2 +- - -+, n’est autre que 'opposé du coefficient de 2" ~!
dans ’équation polynomiale :

m1+...+xn:a1+...+an+y.

=1 et finalement

i=1 dy
/cpz/h(u)du . <
R R

Le théoréme de comparaison n’a bien entendu pas de réciproque :
par exemple si [ est intégrable au voisinage de +00 on ne peut pas dire

que f est négligeable devant ~en +00 (cherchez un contre-exzemple!).

Une hypothése de monotonie supplémentaire permet toutefois d’avoir le
résultat comme le montre ’exercice suivant.
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4.5. Fonction intégrable monotone

1. Soit f :]0,1] — R4 continue par morceaux décroissante et
intégrable. Etudier lim0 xf(x).
T—
2. Soit f : Ry — R, continue par morceaux décroissante et
intégrable. Montrer que zf(z) — 0 en +oc.
(Ecole polytechnique)

> Solution.
1. Soit « € ]0,1]. Comme f est décroissante et intégrable sur ]0, x]
il suffit d’observer que

[ s> [ st =i >0
0 0

puisque l'intégrale de gauche tend vers 0 lorsque z tend vers 0.

2. La fonction f étant décroissante sur R, elle admet une limite en
400 qui est forcément nulle puisque f est intégrable. Pour tout = > 0,
on peut minorer ainsi la tranche entre /2 et x :

: ’ _ zf(z)
L/2f(t)dt> /z/Qf(:c)dt— o

xT
Comme lim / f()dt = 0, on conclut par comparaison que zf(x)
xr——400 1/2

tend vers 0 quand z tend vers I'infini. <
Le lecteur trouvera la version discréte pour les séries de la seconde
question dans l'exercice 3.10 du tome analyse 1.

Il est trés important de noter une différence essentielle avec les
séries : une fonction intégrable sur Ry ne tend pas forcément vers 0 en
+oo (un exzemple est donné dans la solution ci-aprés). Toutefois une hy-
pothése supplémentaire sur la fonction (par exemple son uniforme conti-
nuité) va permetire d’obtenir ce résultat.

4.6. Limite en +o0o d’une fonction intégrable (1)

Soit f : R — R de classe C'. On suppose f et f’2 intégrables.
Etudier les limites de f en 400 et —co.

(Ecole polytechnique)
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> Solution.

Rappelons avant toute chose que f peut étre intégrable sans avoir de
limite en +00; f peut méme ne pas étre bornée au voisinage de +oo et
étre continue et intégrable. Pour avoir un exemple il suffit de prendre
une fonction continue affine par morceaux dont le graphe est formé de
pics dont les aires successives forment une série convergente :

3

0 1 2 3 4

Sur l'exemple de la figure on a pris des triangles centrés en chaque

. . N 1 .
entier n > 1 avec une hauteur égale a n et une base de largeur — - L’aire
n

. .1 . , -
est alors égale a 5,2+ ce qui est le terme d’une série convergente.
n

Dans notre exercice l'intégrabilité de f’ % doit donc étre utilisée. On
va voir qu’elle induit une certaine régularité de f. En effet, pour x < y

on a par l'inégalité de Cauchy-Schwarz,
Yy Yy Y v o,
[ri=\[ixri<y[ W] r
x x x x

de sorte qu'il existe K > 0 tel que |f(y) — f(z)] < K,/|y — z| pour tout
(z,y) € R% On dit que f est holdérienne de rapport 1/2. 1l est facile
de montrer qu'une fonction holdérienne est uniformément continue : soit
e>0etn=e?/K2 Alors, si [y —z| <n,ona |f(zx) — f(y)] < %K =ec.
On conclut alors avec le lemme suivant (et la version analogue en —o0) :

[f(y) = f(2)]l =

Lemme. Soit g : [0, +00[— R intégrable et uniformément continue sur
R;. Alors lim g(x) =0.
T—+o0

Démonstration.

Soit ¢ > 0 et > 0 un module d’uniforme continuité de g pour €.
Prenons > 0 et y = x +n. Alors, si x <t <y, |g(z) — g(t)] < ¢, et
lg(t)| = |g(x)| — €. Par conséquent :

[ 1612 @) - 0) <ty — 2) = nllg(@)] — ).
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s 1 sy 1 ptoo . L
D’ou |g(z)] < e + p /I lg) < e+ p /I lg|. Comme g est intégrable,

+
il existe A > 0 tel que pour x > A, / - lg| < en. Par conséquent, si
x
x = A, |g(x)| < 2e. Cela prouve que lim g(z) =0.
T—+00

Conclusion. La fonction f tend vers 0 en 400 et en —o0. <

Dans [exercice suwivant, on wutilise le lemme qui wvient d’étre
démontré : une fonction intégrable sur Ry et uniformément continue
sur Ry admet une limite nulle en 4+o00.

4.7. Limite en 400 d’une fonction intégrable (2)

Soit f : Ry — R de classe C2 telle que f et f”? soient
intégrables sur R, .
1. Montrer que f’ tend vers 0 en +oo.
2. Montrer que f tend également vers 0 en +oc.
(Ecole polytechnique)

> Solution. ’
1. Pour z,y € Ry, comme f est C2, f'(z) — f'(y) :/ f" etona

par l'inégalité de Cauchy-Schwarz

() = £' ()l </[ ]If”\ < \//[ ]1\/ [ ]f”z <Kvly — =],
T,y z,y T,y

ouK =, //]R f"%. La fonction f’ est donc %—héldérienne et en particulier

uniformément continue.
Raisonnons par I’absurde et supposons que f’ ne tende pas vers 0 en
+o00. Dans ces conditions,

Je>0,VA >0, Iz > A, |f'(2)] > e.

Considérons un tel €. On pose xzg = 0. Il est possible de trouver un réel
x1 > x9+1=1avec|f'(x1)| > e. Sixo,...,2x, sont construits, on choisit
Tny1 = Tn+ 1 tel que |f'(2,)| 2 e. Il y a une infinité de termes de cette
suite tels que f’(z,) = 0 ou une infinité de termes tels que f'(z,) < 0.
Quitte & extraire une sous-suite de (x,)nen et & changer f en —f, on
dispose d’une suite (z,)nen tendant vers 4+oo telle que pour tout n > 0,
f(xn) > .

Prenons 1 un module d’uniforme continuité de f’ pour % Alors, si

m

x € [xn — 0,2, + 1], f'(x) reste supérieur & =. En particulier, f est

[\
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strictement croissante sur cet intervalle et change de signe au plus une
fois. En particulier, sur [z, —n, x,] ou sur [z, 2, + 7] elle garde un signe
constant. Il s’ensuit que 'intégrale de |f| sur cet intervalle en question
- . N ) . €
est supérieure ou égale a ’aire d’un triangle de base 1 et de hauteur 5

On en déduit dans les deux cas que

Tn+n +o00
/ |f| = —, et a fortiori / |f| =
o

n Tn—

Or la suite (z,)nen divergeant vers oo, les intégrales /;i, |f]
convergent vers 0 puisque f est intégrable, ce qui constitu"e une
contradiction avec la minoration précédente.

On conclut que f’ tend vers 0 en +o00.

2. Il existe A > 0 tel que |f'(z)] < 1 et comme sur le segment
[0, A], la fonction f’ est continue, elle y est en particulier bornée. Au
total, f’ est bornée sur R et f est donc lipschitzienne et en particulier
uniformément continue. Comme f est intégrable, on en déduit d’apres
le lemme de I'exercice 4.6 que f tend également vers 0 en 4oc0. <

4.8. Limite en +o0o d’une fonction intégrable (3)

Soit f : Ry — R de classe C'. On suppose f + f' de carré
intégrable sur R .
1. Montrer que f est bornée.
2. Montrer que f tend vers 0 en +oo.
(Ecole polytechnique)

> Solution.
1. Ona2ff =(f+f)*—f>— f? et en intégrant entre 0 et z, f
étant de classe C', on a

f(2)? = £(0)? /f+f /f2 / 1< /f+f

d’ott f(x) +/ (f + f")?. Ainsi f? est majorée et la fonction
f est bornee sur R+
2. Soit € > 0. Pour y < x, on a

f(:v)z—f(y)2=/yw(f+f’)2—/:f2—/:f’2</;(f+f’)2.



186 CHAPITRE 4. INTEGRALES GENERALISEES

et f(r)? < f(y)? —|—/z(f—|— f)?. T existe A > 0 tel que pour tout A <y
y

+oo
on a /y (f + f")? < e. Par ailleurs, il existe yp > A tel que f(yo)?> < e

En effet, dans le cas contraire, f2 n’est pas intégrable et en considérant

F2(@) - £2(0) = /f+f /f2 / /< /f+f /f2

le terme majorant diverge vers —oo ce qui est absurde. Ainsi pour tout
T = Yo, O a

x “+o00
f(x)? < flyo)? +/ (f+)* < flyo)? +/ (f+[)? <2,
Yo Y

0

et le fonction f tend bien vers 0 en 'infini. <

4.9. Sur lintégrabilité d’un produit

1. Soit u € C°(R,R), bornée et v € C°(R,R) intégrable sur R.
Montrer que uv est intégrable sur R.

2. Soit u € C°(R,R). On suppose que, pour toute fonction
v € C°(R,R), intégrable sur R, la fonction uv est intégrable sur
R. Montrer que u est bornée.

3. Soit u € C°(R,R). On suppose que, pour toute fonction

“+o00
v € CO(R,R) bornée, I'intégrale / uv est semi-convergente. Mon-
— 00

trer que u est intégrable sur R.

(Ecole normale supérieure)

> Solution.

1. C’est évident car < ||ulloo|v|. Comme v est intégrable sur R,
lu|loo|v] puis uv le sont également par théoréeme de comparaison.

2. En remplagant éventuellement u par |u|, on peut supposer u > 0.
Il faut démontrer que u est bornée sur R, et R_. La démonstration
est identique. On raisonne par ’absurde et on suppose que u n’est pas
bornée, c’est-a-dire pas majorée sur R .

On peut construire une suite (a,),en+, strictement croissante, a va-
leurs dans R, telle que pour tout n € N*, u(a,) > n. En effet, u n’est
pas majorée par 1, d’ou l'existence de a;. D’autre part, a1, ..., a, étant
construits, la fonction u est majorée sur [0, a,, + 1] car elle est continue;
elle n’est donc pas majorée sur [a, + 1, +00[ et il existe a1 = an, + 1
tel que u(ant+1) = n+ 1.

Pour tout n € N*, u étant continue, il existe un segment I,, d’intérieur
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- On

non vide, contenant a,, tel que, pour tout = € I, on a u(z) >

o3

peut supposer les segments I,, disjoints.
On construit alors une fonction v € CO(R,R) telle que v(z) = 0 si

1 . . .
¢ |J I et, pour tout n € N*, /I v= (il suffit de déterminer sur

n

neN*
chaque intervalle I,, une fonction continue, nulle aux extrémités de I,, et
1 . L 11
telle que / v = — ). La fonction v est intégrable sur R et / v = — -
In n? R n=1 n?

En revanche, on a, pour tout n € N*,

I T RES
uv =2 — v =z —
1, 21n 2n

n 1 . s
et donc /Oa T > > T La fonction uv n’est pas intégrable sur R et

on a la contradiction cherchée.

3. On va prendre une fonction v telle que uv soit proche de |ul.
_u) C’est une fonction conti-
[u@®)] + el
u(®)]

[u(®)| + e~ 1l
+

Par hypothese, 'intégrale / “wv est semi-convergente. Comme la fonc-
—oo

u?(t)
(@] + e T

Considérons la fonction v : t —

nue sur R et bornée puisque pour tout réel ¢, |v(t)| <

X

tion wv : t — est positive elle est intégrable sur R.

Ju(t)]e”"
fu(t)] + e 1
et donc 0 < w(t) < e ¥, La fonction ¢ — e~ /¥l étant intégrable sur R,
w est également intégrable sur R. Donc |u| = w + uv est intégrable sur
R, c’est-a-dire que u est intégrable sur R. <

Au liew de la fonction t — e~ !, n’importe quelle fonction intégrable
et strictement positive conviendrait.

Considérons w = |u| —uwv. On a pour tout réel ¢, w(t) =

Les prochains exercices sont consacrés a des calculs d’intégrales
généralisées. Comme pour les intégrales définies on essaye de se rame-
ner a des fractions rationnelles par des changements de variables. En
effet, lorsqu’on dispose de la factorisation sur R du dénominateur d’une
fraction rationnelle réelle, il est possible de calculer explicitement sa
décomposition en éléments simples et ensuite une primitive. Les éléments

. \ 1 o .
de premiére espéce en CEr (a € R) s’intégrent enln|z —al sin =1
et W st n = 2. Pour les éléments de deuxiéeme espéce,
un changement de variable affine permet de se ramener a . 1l

(1‘2 + 12)n
suffit alors de poser t = arctan x pour réduire le probléme a lintégration
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d’un polynome trigonométrique. Bien sur, lorsque n = 1, on retiendra
directement la formule

/ L arctan® 1 Gt
x2+a2—aarcana €.

L’exercice sutvant regroupe divers calculs explicites d’intégrales de
fonctions rationnelles posés lors d’orauz a l’école polytechnique.

4.10. Calcul d’intégrales (1)

2

1. Calculer /_+: -2

— = _dx.
1—a2 424

+oo 1 2
2. Calculer /0 ( T2 ) dz
dx

3. Soit a,b > 0. Calculer /jozo T () .

(Ecole polytechnique)

> Solution.

Avant de commencer, notons qu'une fraction rationnelle F est
équivalente en +o0o a cx™ ou c est une constante non nulle et n est
le degré de F. En un pdle réel a de F on a un équivalent de la forme
m ou ¢ est non nul et k > 1. Il résulte du théoreme de comparaison

que si J est un intervalle non majoré ou non minoré, F est intégrable
sur J si et seulement si F' n’a aucun poéle dans J et degF < —2. Cette
condition est bien vérifiée pour les trois exemples proposés ici ce qui
justifie I'existence des intégrales a calculer.

1—a?
T— ot

+
[=2 /0 - f- Opérons le changement de variable y = %, ce qui est licite

1. Posons f:x+— et I = /R f. Comme f est paire on a

1 .
car z — — est de classe C! et strictement monotone :
X

0 _ 2 +oo 2 _
[= 2 L= (1/y) dy:?/ v o1 4 - 1
0

too L= (1/y)2+ (1/y)t y2 yt -y +1

On conclut que

too ] g2
I = —————dx=0|
/_OO 1—22+ 24 .

2. 1l s’agit d’un élément simple de deuxieme espece et le changement
de variable classique a appliquer est ¢ = arctanx qui est bien de classe
C! et strictement monotone :
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Foo 1 \2 2 (14 tan?t
[ () e
0 1+ 22 o (1+tan®t)?

2/2722/2cos2tdt
o l4+tan“t Jo

31 o2t
[T Ly,
0 2

4

3. Ona
1 1 b2 — o2

XZta? XZ+02  (X2+a?)(X2+02)

Par conséquent, si a # b, on peut écrire

I(a,b) / dx 1 / < 1 1 )d
a = = — T
’ B (22 +a2)(22+b2) b2—a? Jg\a?+a2 a2+ b2 ’

ce qui donne

+oo 1 [
— — |arctan —
oo b b

1 1 x teo ™
b= —— [ = |arctan & SR —
J(a,b) a2 <a [arc an — _OO> ab(a £ D)

Si a = b, on peut poser y = z qui est un changement de variable de
a

classe C! strictement monotone pour se ramener & l'intégrale calculée &
la question précédente :

J(aa)_a/diy_i/i_i
i - R (a2—|—a2y2)2 T3 R (1+y2)2 T 943

Il est également possible d’invoquer un passage a la limite. Ab>0

fixé, la fonction g : (a,z) — DI est continue. Prenons

a > 0. On a alors pour a > a et tout z € R, 0 < g(a,z) < g(a,x)
avec g(a,.) intégrable. Cette domination nous assure que la fonction

ar— /R g(a, z)dx est continue sur Ja, +00[ et finalement sur R puisque
la continuité est une propriété locale. Ainsi
v

Ia,b) = ab(a +b) a—b

Conclusion. Pour tout (a,b) € (R%)?, on a

dz T
/R(x2+a2)(x2+b2) ~abato)| "

L’exemple de ’exercice suivant est nettement plus technique.
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4.11. Calcul d’intégrale (2)

+oo dx
CalCU.lel“ /—oo m : )
(Ecole polytechnique)
> Solution. 1
Soit f:z € R+— Tr 128 Elle est continue et intégrable sur R

en vertu du théoreme de comparaison puisque lorsque x tend vers 400

(ou —c0), on a f(x) ~ mig.

Décomposons la fraction F = en éléments simples dans

1
X84+ X4+1
R(X). Commencons par faire ce travail pour

1 1 1

C=Virvizi~ Y2+1)2-Y2 (YZ-Y+D)(YZ+Y+1)

Compte-tenu de la parité de la fraction G, il existe a,b € R tels que

1 o aY+b n —aY +b
Y4+Y2+1 0 Y24Y+1 0 Y2-Y+1

En multipliant le tout par Y2 + Y + 1 puis en évaluant en j, on obtient
1 1 32 1 1
W= i1 Ty 2 YT

Comme (1, j) est une base de C vu comme R-espace vectoriel, a = b = % .
Comme F(X) = G(X?), on obtient

1< X241 —X241 )

BPACCES CFS S T e
Décomposons en éléments simples chaque terme. On a
X4 X241 =(X24+1)2 X=X+ X+1)(X2=X+1)et

Xt X241 =(X241)2-3X2 = (X2 - VBX + )(X2+V3X +1)
Il existe donc a, 3,7v,6 € R tels que

X2+1  oX+p —aX+ g ot
X1+X2+1 X24+X+1 X2-X+1
-XZ+1 ¥X 49 —X+46

X{—X24+1 X24++8X+1  X2—BX+1
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On multiplie la premiere égalité par 1 + X + X2 et on évalue en j :

-2
Z ;1 = % aj + B, ce qui donne par identification a = 0 et 8 = %
—<]
Pour la deuxieéme, l'identification des termes constants donne § = %
L’identification sur le terme en X2 donne v = % Au final, on obtient
2
o 1 1 . 1 + f X+1 5 X+1
T4 X24X+1 0 X2-X+1 fX+1 X2 —/3X +1

La contribution a I'intégrale du premier terme est égale a celle du second :
il suffit d’effectuer le changement de variable y = —z pour le constater.
De plus, par le changement de variable z = y + 1/2, on a

dx B dz B dz _ 2m
/Rx2+x+1 */R(x+1/2)2+3/4 */Rz2+3/4 V3
Le traitement des deux derniers membres est plus délicat car chacune
des fonctions n’est pas intégrable. Cependant, on peut écrire

2 2
/(—x2+1)dx_ . \fx—I—l . —%x—i—l
R 2t —22+1 AH+<>°2 Al 224+V3z+1  22—V3zx+1
En faisant le changement de variable y = —z, il vient
2
/(—x2—|—1)dx_ \/§x+1
R xt—22+1 A—>+oo Al 224+ V3r+1 ,
Or, on a
2
A 7%“{‘1 A
V3 [1 2 }
V2 | =|—=I@®+V3z+1
/—A 22 +V3zx+1 V3 ( )_A

L A%+ V3A 41
= —— In _—
V3 —V3A+1

qui tend vers 0 quand A tend vers l'infini. Au final, il reste

/7% —1<227r+0>—7T <
r1+at+28  4\"3 V3

L’exercice suivant est un classique ou l’on obtient la valeur d’une
intégrale sans qu’il soit possible d’expliciter une primitive de la fonction
intégrée.
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4.12. Calcul d’intégrale (3)

/2
Cakukx(é 2 In(sin t)dt.
(Ecole polytechnique)

> Solution.
La fonction f : ¢ € ]0, g} — In(sin¢) est continue. Comme sint ~ ¢
quand t tend vers 0, on en déduit que Insint ~ Int = o (%) si bien

que, par théoréeme de comparaison f est intégrable sur J = ]0 s

K 2 *
Notons I I'intégrale de f sur J. Par le changement de variable affine,
u= = —+t, il apparait que la fonction u — In(cosu) est intégrable sur

0, g [ et que

/2 /2
1= / In(sint)dt = / In(cos u)du.
0 0
On en déduit que
/2 /2 1
2l = / In(sintcost)dt = / In (5 sin(2t)) dt
0 0
T w/2
=——In2+ / In (sin(2t)) dt.
2 0
On opere le changement de variable affine v = 2t et on obtient
ﬂ——512+5/ﬂ invd
=-zh 2/, nsinvdv,

avec v — Insinv intégrable sur |0, 7[. Or le graphe de cette fonction
s
présente une symétrie d’axe r = g et finalement /0 Insinvdv = 2L

Conclusion. On a|I = —g In2| <«

4.13. Calcul d’intégrale (4)

Soit f : [0, +oo[— C continue. On suppose f dérivable en 0 et

f(x)

T == intégrable sur [1, +o00[. Soit (a,b) € RiZ. Montrer que :
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dz = f(0)In —-

/*"" f(bz) — f(ax) a
0 T b

(Ecole polytechnique)

> Solution.
e Il y a une impropreté en 0 et en +00. En 0, 'impropreté est fausse,
car pour « > 0, on a
bx) — bx) — f(0 — f(0
Flbw) — flax) _f0n) = F0) _ flar) = FO)

T bx ar z—0

et la fonction intégrée se prolonge donc par continuité. Pour X > 1, on a

)L R fWldy P ) e f ()l
/1 x dz = /b y/b ?_~/b Y dyg/b Yy -

y=bx

f(az)

est intégrable sur [1, +oco[. De méme pour x — *——~-
x

M est intégrable sur RY .
e Pour X > 0 on pose Ix :/+Oo de. Ona:

X
Ty = /+OO Mdm—/+m Flaz) 4,

X T X x

Donc = —

f(bx)

En conclusion, x —

En effectuant le changement de variable y = bz dans la premiere et
y = ax dans la seconde, on obtient

e f(y) oo fly) . X f(y)
e R N e

Il s’agit de montrer que )IX — f(0)In %‘ ﬁ 0. Remarquons que
—0

a _ [aX f(0) . .
f(0)In 7= /bX Tdy ce qui permet d’écrire

’IX—f(O)ln%’: axwd

J< [ -0l
[aX,bX]

bX Yy Yy
dy
< sup [f(y) — f(0)] —
y€[aX,bX] [aX,bX] Y
a
< sup  [f(y) = fO)[|In | ——0,
y€[aX,bX] bl x-o0
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puisque f est continue en 0. On conclut que

[ 10 e,
0

a
- xzf(O)lng.Q

Des cas particuliers de cet exercice sont souvent posés. En voici deux
exemples.

4.14. Calcul d’intégrale (5)

dzx.

Lg—1
Calculer / a:
0 nx

(Ecole polytechnique)

> Solution.
La fonction f : = € ]0,1]

-1 est continue et se prolonge

nr
par continuité en 0 et en 1 en posant f(0) = 0 et f(1) = 1. Comme
z — —Inz est un C'-difféomorphisme de |0, 1[ sur R% le changement
de variable y = —In z est légitime et on a

Ly 0 v _1 +00 =Y _ o2y
/ x dzx = —/ ¢ e Ydy = / idy.
o Inz 400 ) 0 Yy

En reproduisant la solution de 'exercice 4.13 avec f :y € Ry — 7Y,
a =2 et b=1, on obtient

1.
/ x 1dm:1112.<1
0

Inx

4.15. Calcul d’intégrale (6)

oo arctan(mx) — arctanwd

Calcul de /

0 T

(Ecole polytechnique)

> Solution.
C’est encore une application du résultat de I’exercice 4.13. En effet,
si on pose f(z) = arctan(1/x) pour z > 0, il vient
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T _ arctan ! —7r—1rtn1
arctan(rz) — arctanz 2 oo\ g PR

T xT

. 1
en vertu de la relation arctan x + arctan P g valable pour tout x > 0.

La fonction f se prolonge par continuité en 0 en posant f(0) = g - Dans
ces conditions, f est dérivable en 0 puisque

f(x) — f(0) arctanl/x —7/2 _ _arctanz

—1.

x X x z—0

f(z)

Il reste a vérifier que z — — est intégrable sur [1,4o00[. On a pour
x tendant vers 400,
f(z) arctanl/z 1

0< - ~ =
x €T €T

et le théoreme de comparaison permet de conclure. Toutes les hypotheses
sont donc vérifiées si bien que :

- dm:§ln7r.<

/+°° arctan(mz) — arctan v
0

4.16. Calcul d’intégrale (7)

+oo
Soit a, b dans R? . Calculer / e T
0

(Ecole polytechnique)

> Solution. e e
La fonction f :t+— e~ =07t est continue sur R et se prolonge
par continuité en 0 en posant f(0) = 0. Comme 0 < f(t) < et =
1 PR . N .
0 (t—z), le théoreme de comparaison nous assure de 'intégrabilité de f
sur R .
Le changement de variable x = at est donc licite et donne

+oo 2,2 32,-2 1 [t 2 2;2 2
/ e t*—b"t dt = 7/ et —a b x dz.
0 a Jo

+ _
Posons pour A > 0, I(\) = /0 * e=2"=**""qz. La fonction I est continue
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2 —2 .
sur Ry car F: (\,z) € Ry x R} — e~ ~2% " est continue et on a la
domination suivante :

2 —2 2

VA0, V>0, 0<e ™ M7 Le™@,
avec x — e~ intégrable sur R .

La méthode classique consiste alors a trouver une équation

différentielle vérifiée par I. La fonction F est C' sur I'ouvert R% x RY et

OF e=a A2
SO =
oA x2
ve 4 1., |OF e’ . . ..
L’inégalité a(/\,m) < 5 be constituerait pas une domination

intéressante puisque la fonction qui majore n’est pas intégrable sur |0, 1].
Prenons Ay > 0. Pour tout A > A\g, on a alors

OF e~ —Aoz ™’
Vz >0, '5(/\733) < 2 p(z).

Cette fois-ci, ¢ est bien intégrable car elle se prolonge par continuité en

0 et en +oo elle est négligeable devant g Le théoreme de dérivation
nous assure donc que I est dérivable sur [Ag, +00[ et finalement sur tout

R?*, la dérivabilité étant une propriété locale et

+o00 efa:zf)\z’2
I'(\) =— / ———du.
0 X
) . 1 . . 1 .
Le dénominateur = fait penser au changement de variable y = ~ qui

est un C! difféomorphisme de R (ce qui le rend licite) et qui transforme
R% en lui-méme :

0 —2 2 1 +oo —2_ 2 I(/\)
I/ A = / i _Ay d = —— / —Az -z d = -,
( ) +o0 ‘ Y \/X 0 c ‘ \/X

en posant z = v/ Ay. On en déduit 'existence d’une constante K telle que

pour tout A > 0, I(\) = Ke=2V*. Par continuité, I(0) = K et comme
+

/0 Fe2'dz = VT

5 (voir exercice 4.29 pour un calcul de U'intégrale de

Gauss), on obtient I(\) = ge”ﬁ et

+oo 2,2 ;2,-2 s
/ e t“—b“t dt = fe—Qab A
0 2a
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4.17. Formule des résidus pour les fractions rationnelles

Soit P, Q dans C[X] avec deg P < deg Q — 2. On suppose que Q
ne s’annule pas sur R. Montrer que

+ww =T ) (o
[ Q=" X eleuta)

ou 2 est 'ensemble des poles de la fraction F = E, e(a) le signe

Q

de la partie imaginaire de « et p(«) le coefficient de

dans la

décomposition en éléments simples de F'.

e
dt.
14+ t4

+
Application : calculer / -
—0o0

(Ecole polytechnique)

> Solution.

La fraction F est continue sur R puisqu’elle n’a pas de pole réel
et intégrable car de degré < —2 (on a F(z) = O(z72) en +o00). Le
théoréme de décomposition en éléments simple nous assure que F est

.. . 1
une combinaison linéaire de termes ﬁ avec k > let a € Q. Or
—

si k > 2, nous disposons d’une primitive d’un tel élément simple et plus
précisément :

/+<>o dt B |:_ 1 1 +oo o
oo (t—a)F | E—1(t—a)k1 -

— 00

Finalement, seuls les termes vont donner une contribution &

L s 1 o
Iintégrale. Il est a remarquer que t — o n’est pas intégrable sur R.

€T

Cependant la limite lim existe ; en effet, si on écrit a = a+1b

z—=+4oo J_, t—«

avec a, b réels et b #£ 0, il vient

T odt T t—a+ib
T LA
/,xtfoz —z (t—a)®>+ b2
z t—a o [T dt
:/_w (T EE R B s e
_a)2 2 T
:llnwﬂ-b/ e
2 (z+a)?+0? —z (t—a)?+ b2

z’b/ a —ib/idu L
iotoe e t—aZ+62 e+ R Bl
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Comme / +OO F(t)dt = hm / t)dt, par linéarité de l'intégrale, on
obtient la formule
—=dt =im e(a)pu(a).
e an Ty,

Cela s’applique directement & P = X2 et Q = 1 4+ X*. Les racines de
Q sont les racines quatriemes de —1, elles sont simples. Si o désigne une
P(«) 1 a?

t = — = -2 Not
<o Q@) o 1 otons
ag = ™/, Les autres racines sont iag, —ag et —ic (les deux dernieres
étant a partie imaginaire négative) si bien que

too 42 3 3.3 o .
/ mdt = Um (_O&O _ 7,Oé0> —_ _%(61377/4 _ i6137r/4) et
—o0

racine de Q, le coefficient de

Les exercices qui suivent sont consacrés a des inégalités intégrales.
Le lecteur trouvera une version pour les intégrales définies de l'inégalité
de Hardy qui suit dans ’exercice 1.12 du tome analyse 2.

4.18. Inégalité de Hardy

Soit f : Ry — R continue telle que f? soit intégrable sur R, .
On pose g(z) = 1 /(f f(t)dt pour > 0.
x
1. Montrer que g se prolonge par continuité en 0.
2. Montrer que g2 est intégrable sur R et que

+oo +oo
/ 9> < 4/ f?
0 0

3. La constante 4 est-elle optimale 7

(Ecole polytechnique)

> Solution.
1. Notons F la primitive de f s’annulant en 0. On a g(z) = Flx)
€T
pour z > 0 : g est donc C' sur R%. Comme g(z) = (z) ~ F(O) , g(x)
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tend vers f(0) quand z tend vers 0. En posant g(0) = f(0), on prolonge

g par continuité sur Ry.
2. Prenons 0 < u < v. On a, en intégrant par parties,

[ st = A {Fm ]” /; Lgmdx
_ F(u) + 2/U F(z

Fw? H/U Fle),

<& u)2 +2\//v FE;)de\//U £2(2)dz

par l'inégalité de Cauchy-Schwarz. Il reste donc

o< o[

ce qui donne en faisant tendre u vers 0,

/ / u)?
f2 car hm — =0.
u—0

Sl/ g? > 0, on a apres simplification, / ' 4/ f2, ce qui est aussi

z:

<

<
IS

=

vrai si /0 g? = 0. Ainsi, pour tout v > 0, on a

v +oo
/ 92<4/ 12
0 0

ce qui prouve l'intégrabilité de la fonction positive g2 et I’inégalité

+oo +oo
/ 9’ < 4/ 12
0 0

3. Le cas d’égalité dans I'inégalité de Cauchy-Schwarz correspondrait
a f et g colinéaires, ce qui donne une équation différentielle de la forme
xF’ = AF (avec \ constante) et on en arrive & f de la forme x — z*.
Malheureusement, f2? doit étre intégrable sur R, ce qui implique 2a <
—1 (intégrabilité en +00) et 2a > —1 (intégrabilité en 0). Ces deux
conditions sont incompatibles. Cela nous invite toutefois a considérer

. 1
la fonction z —— —= mais en la modifiant aux bords pour assurer

I'intégrabilité. Soit n > 1 et f définie par
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1si0<z <1

<
frreR,—{l/Vosil<z<n

Vn

six > n.

e + N
Dans ces conditions, /0 OofQ =2+ Inn. Quant a g, pour 1 < = < n,

on a g(w):;</011+/1~z%>255_;

Un calcul de I'intégrale de g2 entre 1 et n donne 4lnn—7+ 8 _ % Soit
n

C une constante pour laquelle I'inégalité de la question 2 est vérifiée. En
particulier,

n 400 —+oo
/ g2</ 92<c/ 2 =2C+Clnn.
1 JO JO

Comme /n g% ~ 4Inn lorsque n tend vers l'infini, on obtient 4 < C.
Donc 4 est la meilleure constante possible. <

L’ezercice s’interpréte comme un calcul de norme triple. Notons L2
l’espace vectoriel des fonctions continues sur Ry et de carré intégrable
et munissons le de la norme de la convergence en moyenne quadratique.
L’application T : f — g est un endomorphisme de L2 d’aprés les deux
premieres questions et ’inégalité de Hardy montre qu’il est continu avec
T = 2. On dispose plus généralement d’inégalités de Hardy pour les

espaces LP (p > 1). On obtient | T| = Ll
p—

L’énoncé suivant fait justement démontrer, dans le cas d’intégrales
doubles, l'inégalité de Minkowski qui montre que pour tout p > 1 l’appli-

1/
cation f — || fll, = (/I \f|p> ¥ est une norme sur Uespace des fonctions

continues sur lintervalle 1 telles que |f|P soit intégrable.

4.19. Inégalité de Holder, inégalité de Minkowski

Soit p,q > 1 tel que l+ 1 =1
p q

P q
1. Soit a,b € Ry et p > 0. Montrer que ab < (ap) + (b/n)* .
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2. Inégalité de Hélder. Soit I un intervalle, f, g : I — R conti-
nues par morceaux telles que fP et g? sont intégrables. Montrer que
fg est intégrable et que ’'on a

Jeas (f)" ()™

3. Inégalité de Minkowski. Soit f,g : I — R, continues par
morceaux telles que fP et g? sont intégrables. Montrer que (f + g)P
est intégrable et que l'on a

(Jureor) "< (fr)" ()"

(Ecole normale supérieure)

> Solution.
1. On peut écrire, par convexité de ’exponentielle,

ab = (an) (/) = exp (5 (pInfap)) + - (aln(b/0) )

plnap) 4 leq In(b/n) < (ap)” + (b/L)q.
q p q

N
—

< —e

3

1/p 1/q
2. Posons a = (/pr> et g = </ng) . Sia =0, fP étant
continue et positive, on en déduit que f est nulle sauf sur un ensemble
fini. [’inégalité est alors triviale. Il en va de méme si § = 0. Supposons
a > 0et > 0. Alors d’apres la question 1 appliquée avec =1, a = S
etb=2 ona
B

fo _1f0 140
af " par  qpe
Le théoreme de comparaison assure donc que fg est intégrable. De plus,
comme o = /I fPet gl = /1 g4, en intégrant 'inégalité précédente, on
obtient
hfo _ter apr 11
af T paP  qpl p o q
En multipliant par o3, on obtient 'inégalité demandée.
3. Supposons que I est un segment [a,b] (e < b). L'inégalité est
triviale si /I(f + ¢g)P = 0. Supposons que /I(f + ¢)? > 0. Par l'inégalité
précédente, il vient
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[rsvarr< ()" (furv o)
Jarvor< (] gp)l/p (fr+ g><Pl>‘Z)1/q.

Or (p — 1)g = p donc en sommant les deux inégalités, on obtient

/(f+g ((/f”)l/p (/g )W) (/f+g)>1/q,

1/q
ce qui donne en divisant par ( /I (f+ g)p> l'inégalité demandée.
Si I est un intervalle quelconque, pour a < b dans I, on a

/ab(erg)” < (/abfp)l/er </abgp>1/p
<(fr)" ()"

Comme (f 4 g)P est positive, I'inégalité précédente prouve qu’elle est
intégrable sur I et 'on a

o)< ()" (1) -

Il en découle de ce qui précede que l'ensemble LP(I) des fonctions
continues par morceauz sur 1 a valeurs complexes telles que |f|P est
intégrable est un sous-espace vectoriel de [’espace des fonctions conti-

1/p
nues par morceaux de I dans C et que || ||, : f — (/I \f|p> définit

une semi-norme sur LP(I).

4.20. Inégalité de Kolmogorov

Soit f : R — R de classe C? avec f et f” de carré intégrable.
1. Montrer que f’ est de carré intégrable.

2. Montrer que (/R f’2)2 < (/R f2) (/]R f”2).

3. Montrer que f est uniformément continue sur R et tend vers
0 en Fo0.
(Ecole polytechnique)
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> Solution.
1. Soit x > 0. On peut écrire par intégration par parties

[ =i@sw - 1080 - [r
0 0

Or, ff” est intégrable sur R, puisque d’apres 'inégalité de Cauchy-
Schwarz, on a pour tout A > 0,

/0A|ff”|<\//OAfQ\//OAf"QsWﬂhf?\//ﬂhf"?.

T
Dans ces conditions, /0 ff" admet une limite finie quand x — +oo0.

Raisonnons par ’absurde et supposons f’ 2 non intégrable sur R,.
xr
Alors lintégrale /0 f2(t)dt tend vers +oo lorsque  tend vers 4+o00. Vu

ce qui précede, f(x)f'(z) tend aussi vers +oo lorsque en +oo. Cela im-
1

plique classiquement que lim = f2(ac) = 400, ce qui contredit claire-
r—+00 2

ment lintégrabilité de f2. Ainsi, f’ 2 est intégrable sur Ry et par un
raisonnement analogue, on démontre qu’elle I’est sur R_ : donc f’ est de
carré intégrable sur R.

2. L’intégration par parties faite a la question précédente assure que
la quantité ff admet une limite finie en +oo et en —oo puisque f'°
et ff” sont intégrables. Ces limites sont forcément nulles car sinon la
fonction intégrable f2, de dérivée 2ff' aurait une limite infinie en 400
ou en —oo ce qui est impossible. Ainsi, en prenant y < x dans R pour
écrire

[ 2 =1@p@ - swrw - [ s

et en faisant tendre x vers 400 et y vers —oo, il vient

Lr==[ s

Comme pour A > 0, 'inégalité de Cauchy-Schwarz permet d’écrire

/_i ] < \//_1f2\//_1f”2 < WRf2\//Rf"2,
et par passage a la limite, on obtient
< [1rr< \/E,//Rf"?

Oé/Rf’Q:f/Rff”é'/Rff”

En élevant au carré, I'inégalité demandée est prouvée.
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3. Cette derniere question fait I'objet de 'exercice 4.6. Comme [’ 2
est intégrable sur R la fonction f est 1/2-holdérienne donc uniformément
continue sur R. Le lemme montré dans ’exercice 4.6 prouve alors qu’elle
tend vers 0 en £oo. <

4.21. Inégalité de Weyl

Soit f: Ry — R de classe C'. On suppose que f’ et x — zf(x)
sont de carré sommable sur R . Montrer que

+oo ) \/ +oo \/ +o0 -
/0 f(t)dt<2/0 t2f2(t)dt/0 fr2(t)dt.

(Ecole polytechnique)

> Solution.
Soit > 0. Par intégration par parties, on obtient

/Om F(t)2dt = /Oz 1L.f(t)2dt = [tf(t)ﬂz - 2/06 tF () F (H)dt

0

— 2f(z)? 2 / "L £,

Comme t — tf(t) et t —> f'(t) sont de carré intégrable, le cours assure
que t — tf(t)f'(t) est intégrable (car 2[tf(t)f'(t)] < t2f(t)* + f'(t)?).
La fonction f est de carré sommable puisque elle est négligeable en 400
devant zf(x). Les termes /0 f(t)2dt et /0 tf(t)f'(t)dt ont donc une
limite finie en +o0o et par conséquent, il en va de méme de z f(x)2. Notons

C= lim xf(x)? Si C >0, alors f(z)? ~ % quand z tend vers +oo.

r—r+00
Cela, contredit I'intégrabilité de f2. Donc C = 0 et le passage & la limite
donne

+oo +o00
/ f()*dt = -2 / LR £ (H)dt.
0 0

La suite est une conséquence de I'inégalité de Cauchy-Schwarz :

+oo +oo
/0 F(0%dt < 2 / AN @)t

0

< 2\//O+Oo t2f2(t)dt\//0+oo f2(t)dt. <
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4.22. Une inégalité intégrale

(a—b)?
(I+a+0b)?
Soit £ l'ensemble des fonctions f de Ry dans R; contintiment
dérivables, décroissantes et telles que la fonction ¢ — f(¢)t>* soit
intégrable sur Ry . Montrer que c est la meilleure des constantes k
telles que, pour toute f € £, on a

2
a-+b 2a 2b
( [ s dt) < k/R+ £yt dt/R+ £,

(Ecole normale supérieure)

Soient a et b des réels vérifiant a > b >0etc=1—

> Solution.

Soit f € £ et J 'ensemble des réels strictement positifs « tels que la
fonction t — f()t soit intégrable sur Ry. Pour o > 0, la fonction est
continue et positive sur Ry. Il suffit donc de vérifier I'intégrabilité sur
[1,+00[. On en déduit que si a € J et 8 < a, alors B € J, car pour ¢t > 1,
on a f(t)t? < f(t)t*. Par hypotheése, 2a appartient & J. On en déduit
que 2b et a 4+ b sont dans J, car 0 < 2b < a + b < 2a.

Si a € J, transformons /]R+ f(#)t*dt en intégrant par parties; c’est

possible car f est de classe C!. On obtient, pour z > 0,

v « _ 1 a+1 _
/Of(t)t dt = — <o (@) = —

/Om floeetiae.  (x)

La fonction f étant positive et f’ négative, on en déduit pour tout = > 0

()|tede = 1 /f’(t)ta“dtg/ f(H)t>at
—|—1 0 0

< | forede
Ry

a—i—l

On en déduit que la fonction ¢t — b f/(#)t*Tt est intégrable sur R, .

a+1
En faisant tendre x vers 400, on en déduit que ;l_lf(x)xo‘+1 a une
(0%
(a+1)¢

limite finie en 4+00. On la note ¢. Si £ # 0 alors f(z)z®* ~ ~—2,

T—+00 T
ce qui contredit le fait que « appartient & J. On a donc £ = 0. On en

déduit que

1

t)tdt = ———
+f() a+1Jr

f(tettde = +1/ (t)[toTrdt.  (x%)
+
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Cela est vrai en particulier pour o = 2a,2b et a + b. L’inégalité de-
mandée va résulter de I'application de I'inégalité de Cauchy-Schwarz a
/R |f/(t)[t*TP*1dt. Pour tout ¢ > 0, on a

+

@ = (Vi) (Viror).
On en déduit que
2
</ |f’(t)|t“+b+1dt> </ \f’(t)|t2a+1dt/ |f (1) |[£20 e
R+ JRy Ry

En utilisant (xx), on obtient
2
(a+b+1)>? (/ f(t)t‘”bdt> < (2a+1)%(2b+ 1)2/ f(t)t%dt/ FOEa
R, R Ry

wivy,) o 2a+1)(2b+1) 2 )
</R+ ft +”dzt) < (a+b—+1)2/m+ f)t*de .. f@)t*de.

Mais on remarque que

14+a+b)?—(a—b)? (2a+1)(2b+1)

(14 a+b)?  (1+a+b)?

On a donc démontré que, pour tout f € £, on a

</R f(t)ta+bdt>2<c/R f(t)t2adt/R f(t)t%dt.

Il reste a montrer que c est la meilleure constante possible, c’est-a-dire
que c¢ est la borne supérieure de

( k X f(t)ta+bdt> i

L | fyredr e _ fyeat
fEE, f#0

Pour cela, nous allons considérer une fonction f proche d’une constante.

Soit z > 0. Considérons une fonction f appartenant a & telle, pour
tout t € [0,z],ona: f(t) = 1et f(¢t) = 0sur [x+1, 4+oc[. Pour construire
f, il suffit de prendre sur [z, z + 1] une fonction quelconque de classe C!,
décroissante et telle que

f@)=1,fz+1)=f(z) = f(z+1)=0.
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On a alors

2 2
z 1
N > (/ ta+bdt) > 2042042
(th() ) 0 (1+a+b)2x

z+1 1
f)t?ede < / t20dt <
R, 0 14 2a

(z +1)%¢*1 et de méme,

x+1
f)t2tde < / t2dt < —— (v +1)2°+,
R4 0

On en déduit que

2
([, rerear) s
Zc " :
L Syt L | fyear (2 + 1)2at20t2
m2a+2b+2

Sachant que IEIEOO CW

constante possible. <

= ¢, on conclut que c est la meilleure

4.23. Majoration du reste

Soit f : Ry — Ry décroissante, continue par morceaux et a > 0.
On suppose que t — t*f(t) est sommable sur R;. Montrer que
pour x > 0 on a,

/:m F(t)dt < (ufa)x)a/om Flw)udu.

On pourra commencer par le cas ou f est la fonction caractéristique
d’un intervalle [0, A].

(Ecole polytechnique)

> Solution.
On suit I'indication. Soit A > 0 et f = x[p,a]- Pour x > A l'inégalité
demandée est triviale. Soit « € ]0, A[. On souhaite montrer que

a a Aa+1
e ()

1+a)x) a+1
Si on divise par A cela équivaut, en posant t = /A € ]0,1[, &

a(x

-t ————.
( ) (a+1)a+1



208 CHAPITRE 4. INTEGRALES GENERALISEES

On est donc ramené a majorer la fonction ¢ (t) = (1—1¢)t® sur U'intervalle
10, 1[. Elle y est dérivable avec ¢’ (t) = t*~(a — (o + 1)t). Ainsi, 9 est
croissante puis décroissante et atteint un maximum en @

o a®
¢(a+1) ~ (a+ 1ot

Prenons maintenant pour f une fonction décroissante en escalier sur
[0,A] et nulle sur JA,+oo. Soient 0 = zp < 21 < T2 < -+- < xp = A
les points de discontinuité de f et Ay > Ay > .-+ > XA, > 0 les
valeurs de f sur les intervalles Jz;_i,z;[. Si on pose fi = AiX[o,z,];
fo= (A= A)X[0,ep_1]5 -+ o = (Ap—=Ap—1)X[0,24], 12 fonction f coincide
avec f1 + --- + fp sauf éventuellement aux points x;. Comme la va-
leur de lintégrale ne dépend pas des valeurs de f en ces points, on
obtient I'inégalité souhaitée pour f par linéarité puisque d’apres le point
précédent elle est vérifiée pour les f;.

Prenons enfin f décroissante et continue par morceaux quelconque.
Comme t — t*f(t) est intégrable, f tend vers 0 en +oo (sinon elle
aurait une limite ¢ > 0 et t*f(¢) ~ £t ne serait pas intégrable). Il est
aisé de construire une suite (f,) de fonctions en escalier décroissantes
vérifiant 0 < f,, < f qui converge simplement vers f sur Ry. On a pour

tout n, . o e
/I fn(t)dtg(ﬁ) /0 Fo(u)u®du.

Le théoréeme de convergence dominée permet de passer a la limite et
d’obtenir le résultat pour f. <

a+1~Or,ona

précisément

Nous abordons maintenant wune série d’exercices consacrés a
lintégration d’une suite ou d’une série de fonctions et motamment au
théoréme de convergence dominée. Le premier offre une preuve de la

n

célebre formule de Stirling : n!  ~ 2mn (E)
n—-+oo e

4.24. Formule de Stirling

—+o0
1. Montrer que /0 e~ tndt = nl.

2. Montrer que

\}ﬁ/j:o <1 + %)ne*tdt = % (%)nn'
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1 “+o00 t n
3. Montrer que lim —/ (1 + 7) e~ tdt =0 et que
n

n—-+oo n Jn

1 n t\"
li — 1+ — —tdt = V2.
n—l>r—&I-100 \/ﬁ /_n ( + n) © T

4. Retrouver ainsi la formule de Stirling.
(Ecole polytechnique)

> Solution.

1. Posons, pour tout n € N, I, = /0+OO e~t"dt. Onalp =1 et en
intégrant par parties, on obtient I,1; = (n 4+ 1)I,. On en déduit que,
pour tout n € N, I, = nl. Plus rapidement on peut dire que I,, = I'(n+1)
ou I' est la fonction d’Euler.

+ n
2. Posons, pour tout n € N, J, = L/ - <1+ E) e~tdt. En
V/nl-n n

faisant le changement de variable © = n + t, on obtient

J _L/“’"(E)" ne—ug _L(EYI _L<E)" !
n_\/ﬁo - e'e u_\/ﬁn "_\/ﬁn nl.

1 oo AL
3. Posons, pour tout n € N, K,, = %/n (1 + E) e~ 'dt. Par le

changement de variable u = i, on obtient
n

Kn _ \/ﬁ/lJroo (1 + u)n e—nudu — \/ﬁ/lJroo ((1 + u)e_“)ndu.

La fonction ¢ : u — (1 + u)e ™ est intégrable et décroissante sur R .

De plus (1) = % On a donc, pour u > 1,

e < (2) et

e

On en déduit que, pour n € N*,

2 n—1 +oo
0 <Ky < ﬁ(g) [ e
1

D’ou 'on conclut que :

. +oo t\" _,
lim / 1+—) e 'dt=0.
n—+oo J, n
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o 1 n t\" —t
Posons enfin, pour tout n € N, L, = 7n /_n (1 + ﬁ) e 'dt. Le

1
changement de variable u = % donne L, = \/ﬁ/,l (1+u)" e du.
Pour éliminer le terme dépendant de n devant 'intégrale, on fait le chan-
gement de variable v = uy/n et on obtient

\/ﬁ n
L, = / (1 + L) e~ V(.
—Jn \/77,

Considérons, pour n € N*, la fonction f,, définie par

{ (v) ( ) e "V si o] < Vi,
al

U

La fonction f,, est continue par morceaux, intégrable sur R et L,, = /R -

Pour v fixé et n > v? on a f,(v) =¢" In(14+ 7)oV Quand n tend vers
+00, on a

nln(l+%) v nn(\;ﬁ;}ZJro(i))v n:f§+o(l).

On en déduit que, pour tout v € R, on a lim f,(v) =e 2. La suite
n—-+o0o

M

v2

de fonction (fy)nen+ converge simplement vers la fonction v — e~ = .

v2
On aimerait conclure que hm L, / e~ 2 dv. Il suffit pour cela de
n—-4oo R

vérifier la condition de domination.
Un étude de fonction ou la formule de Taylor avec reste intégral
montre que, pour tout x > —1, on a

2 23

In(1 L
(1+z)<x 2+3

On en déduit que, pour tout v € R et n > v2, on a

1(1+ v)< v 1)2_'_ v3
n — )<= t+tF
Vn vno 2n 3nyn
et donc
V2 v3 v 2 v2
In(l14+—)— K—F+—F—=< %+ < ——,
nn<+ ) e T s S T

car v \/ﬁ On en déduit que, pour tout v € Retn € N*, on a

fn( ) < e 6. La fonction v — e ~*% Gtant intégrable sur R, le
theoreme de convergence dominée permet de conclure que

2
. v
lim Ln:/e 2 dw.
n—-4oo R
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Cette limite est égale & /27 (voir I’exercice 4.29). On a donc

lim L, = V2.

n—-+oo
4. Des questions précédentes, on déduit

1 n
lim —(f) nl= lim I,= lim K,+ lim L, = 2.
n—+oo \/ﬁ n n—-+oo n—-+oo n—-+oo

n—-+o0o e

Il en résulte la formule de Stirling : |n! ~ 2mn (E) IR

Le calcul de certaines intégrales passe par un développement en série
suivi d’une interversion de sommation. Rappelons les diverses possibilités

permettant de justifier un échange entre une intégrale et une somme
+oo
infinie. Soit f = > fn la somme d’une série de fonctions qui converge

n=0
simplement sur un intervalle I. On suppose f et les f, continues par
morceauzr. On a les trois théorémes suivants :

1. Si1 est un segment (ou plus généralement un intervalle borné) et si
+oo

la convergence de la série est uniforme sur 1 alors on a /I f=> /If”
n=0

2. Dans le cas général la convergence uniforme n'est pas suffi-
sante. En revanche si la série Z/I |fn| converge, alors il est encore

+oo
légitime d’écrire /If = > /If” On appellera ce résultat le théoreme
n=0

d’intégration terme a terme.
3. Dans certains cas ce résultat ne s’applique pas (par exemple

+oo
pour f(t) = %H = 20(—1)7%" sur I =10,1[; on a bien l’égalité
(e

mais la série des intégrales est semi-

In2 = /]0,1[f(t)dt =3

n=0

+1

convergentes et : est le terme général d’une série di-

1
0,1] |ful = n+1

vergente). Dans ce type de situation on pourra chercher & appliquer le
théoreme de convergence dominée a la suite des sommes partielles de
la série. Cela fonctionne trés bien pour l’ezemple précédent méme s’il
est aussi possible de procéder directement puisque le reste de la série
géométrique se calcule explicitement.

Signalons enfin que le théoréme de convergence monotone (cas ot les
fonctions f,, sont toutes positives) n'est actuellement plus au programme
des classes préparatoires.
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4.25. Interversion série-intégrale

Int
1412
(Ecole polytechnique)

dt.

, 1
Etudier la convergence et calculer b

> Solution.

La fonction f : ¢t €]0,1] — Int

1+ ¢2
D’apres le théoreme de comparaison f est intégrable sur ]0, 1].

est continue et on a f(¢) Koo Int.
—

En développant t — en série entiere sur [0, 1], on a :

1

1412
“+o0

1:/ f:/ (=)™ (Int)t*"dt
ou? = o s

Admettons que I'on puisse intervertir intégration et sommation. 11 vient :
400
I=> (-1)" / (Int)t*"dt.

n—0 10,1]

Pour z € ]0,1] on trouve, en intégrant par parties,

1 ont1]1 11 42n+1
/ (Int)¢2ndt = [(lnt)t} —/ LI

2n+1 t2n+1
i tend L OnadoneT= 3 V"7
ce qui tend vers — (CFE orsque x — 0. On a donc I = nX::O o r 1

Justifions enfin 'interversion de la série et de l'intégrale : la série

+oo 1
> /0 |(Int)t2"|dt est la série de terme général 5 qui converge.
n=0

- (2n+1)2
D’apres le théoreme d’intégration terme a terme la permutation est licite.
Conclusion OnaI*f—iio&—fCoflC—Eoﬂ
. n=0 (277‘ + 1)2 n=0 (271 + 1)2

est la constante de Catalan; 3 10~7 pres elle vaut 0.9159655. <1

4.26. Sur la convergence L'

Soient I un intervalle de R, f, f, : I — R des fonctions conti-
nues par morceaux intégrables sur I. On suppose que la suite (f,)
converge simplement vers f.
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1. On suppose que, pour tout n € N, f, > 0. Montrer que

Jit-mmo= [ [

2. Donner un contre-exemple & 1 dans le cas ou on ne suppose

pas fn = 0.
3. Montrer que

Jit= =z 0= 10l =2 f1n

(Ecole normale supérieure)

> Solution.
1. Une implication est évidente. En effet on a pour tout n,

][m—[ﬂs[m—ﬂ

donc Sl/Ilfn — fl m 0 alors /If” n—s4oo /If

Réciproquement, si /I fn— /I f et silasuite (f,,) est & termes positifs,
on note que 'on a également f > 0 et on pose g, = |fn — fl + f — fn-
Par hypothese la suite (g,) converge simplement vers 0. On note que
gn = 2max(0, f — f,). Comme f, est positive pour tout n, on a
0 < gn < 2f. D’apres le théoreme de convergence dominée, on en déduit

que /Ignmo OL /Ign:/l‘fn_f‘""/lf_/lfn et /If_/Ifn
converge vers 0. On en déduit que /I |frn—g| — 0.

2. On construit une suite de fonctions (f,) intégrables sur Ry,
convergeant simplement vers 0 et telle que /R N fn m 0 et /R N | frl

ne tende pas vers 0.

Pour n € N* et # > n, on pose fn(z) = —0

1+ 22

- On obtient

n n—-+oo

+oo T 1
/ fr(z)dz =n (5 — arctann) = narctan (7) E—

Sur [0,n[ on prend f, affine et telle que /On fn(z)dz = —1; pour cela il

suffit de prendre f,(0) = —% et lim f, = 0. Pour tout n € N*, f,, est

continue par morceaux sur Ry, intégrable sur Ry, car f,(r) ~ —-
r——+o00 I
Pourz € Ry et n > 2, 0n a
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fn(z) = zx - g

n2 n
On en déduit que (f,,) converge simplement vers 0. Enfin, par construc-

ton [ fu——0ct [ [fal ——2.
ton Ry fn n—-+oo 0 ¢ R4 |fn| n—-+oo

3. Supposant que / |fn — f| —— 0, on obtient
I n—-4oo

[ = i< [usi=1si< [0 510

et donc/|fn| —>/|f|
1 n—-+oo
Réciproquement, si /|fn| /|f|7 on a, d’aprés la question 1,
n—-+00

puisque (|fn|) converge vers |f],

St =1l =z 0

On pose hy = |fn = f|—||ful = | fI|- Par hypothese la suite (h,,) converge
vers 0. On vérifie que, pour tout (z,7) € R?, on a
0 < Jo =yl = lz = lyl| < (2] + [y]) = (=] = ly]) < 2lyl.

On a donc
0 < hy <2|f].

Du théoreme de convergence dominée on déduit que | hn —+> 0. Or
n—-+0oo

S = J 1= 71 = [l =1l et [11fal = 171l > 0.
On en déduit que /|fn —fl—— 0.«
1 n—-+oo

Nous abordons maintenant le théme tres riche des intégrales a pa-
rameétre. Les deux premiers exercices conduisent au calcul de [’intégrale
classique de Dirichlet en utilisant la transformation de Laplace.

4.27. Calcul de lintégrale de Dirichlet (1)

+
En étudiant la fonction F : 2 —— / > et Smtdt calculer la
+00 sint

valeur de /0 dt.

(Ecole normale supérieure, Ecole polytechnique)
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> Solution. )
e Onnote f : (2,t) € Ry x R} — e~ MTnt Pour > 0 la fonction

f(z,.) est intégrable sur R, puisqu’elle se prolonge par continuité en
0 par f(z,0) = 1 et que pour ¢ tendant vers +oo, f(z,t) = O (tl?)
Montrons que F est aussi définie en 0. On integre par parties; pour

X>1ona
/X Sintdt: [—cost}X _/X COStdt.
1 t t 1 1 12

cost
t2

Or, la fonction t —

est intégrable sur [1,4+o00[ puisque c’est un

0] <ti2) en +o0o. L'intégrale entre 1 et X admet donc une limite quand
X tend vers 400 :
400 o t o0 t
/ Pt = cos1 — / 5L gt
1 t 1 t2
En particulier F est définie en 0.

. int
La fonction t — i

n’est pas intégrable sur Ry. En effet, si tel

. . . . sin G
était le cas, comme sin® < |sin|, la fonction t — serait intégrable

sur [1,+00[. Or ce n'est pas le cas. En effet, pour X > 1, on a

/X sin2tdt/xl—cos2tdt InX 7/X cos?tdt
1 t 1 2t 2 1 t

X 2X
Or, / cos 2t dt vaut / CO5Y par le changement de variable u = 2t.
1 t 2 u

. . . +oo cosu
Par une intégration par parties, on montre que /1 du converge
si bien que
, X sin?t
lim dt = +o00
X—=+o00 J1 t

.. [too sint int .
Ainsi /0 Sl? dt converge sans que t — SITH soit intégrable.

e Montrons que F est C! sur R* . La fonction f est de classe C*°
sur (R%)? et on a %(w,t) = —e "'sint pour tout (z,t) € (R%)?. Soit
a > 0. Pour tout t > aon a:
of

—(x,t)’ = e sint| < e .

t
vt > 0, 97

Comme t — e~ % est intégrable sur R, , cette domination nous assure

que F est C' sur ]a, +oo| et finalement sur R% . De plus, on a
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400 too ‘
F/(x) = _/ e ®tgintdt = — Im (/ ef(wfz)tdt)
0 0

(i=2) ==
:Im " = —_-———"
i—x 14 22

Il existe C € R tel que pour tout x > 0, F(z ) = C — arctanz. Comme

“+o0
< —xt - -
L}jl(iﬂ < /0 e~ dt = 7 o O 0,onaC = 2 - Ainsi, pour tout = > 0,

F(z) =

— arctan x.

MERSIE!

e Pour montrer que F(0) = =, il suffit donc de vérifier que F est

. . sint
continue en 0. Comme la fonction ¢t ——

n’est pas intégrable,
I’emploi direct du théoréeme de convergence dominée est voué a 1’échec.
Nous allons au préalable effectuer une intégration par parties. Comme
il y a deux impropretés, nous allons scinder le probleme : on pose

1 +
Fi(z) = /0 et Smtdt et Fo(z) = /1 * e—at Smtdt La fonction F
est en fait C! sur R+ car on dispose de la dommatlon
of
ox

et la fonction constante 1 est bien intégrable sur ]0, 1]. Vérifions la conti-

(m,t)‘ =e !|sint| < 1,

+oo —i)t
L2 . o . . . € .
nuité de Fy qui est la partie imaginaire de G(x) = /1 ; de (il

sera plus facile de faire l'intégration par parties sur G) : pour X > 1, on

a
X —(z—i)t 1 e—@-0t]* 1 X —(z—i)t
e e e
/ dt = |- + - / dt.
1 t i—x L, i—zh 2
e*(zfi)t 1 . —(z—1)t . )
Comme e < 2 la fonction ¢ — — est intégrable et

et—T 1 400 e—(ac—i)t
Gz) = / dt.
@) ==t ) 2

—(z—1i)t e—(m—i)t

12 2
est continue sur Ry x [1,400[ et on dispose de la domination par une
—(z—1i)t

+oo e

Or la fonction z — /1 dt est continue car (z,t) —

. . 1 Ly .
fonction intégrable < = On en déduit que G est continue sur

12

R, donc Fy et F le sont aussi.

T gin ¢
Conclusion. On a |F(0) :/ %dt 5 <
0
Une autre solution pour la continuité de F en 0 consiste a intégrer

par parties en introduisant G : x — / Sl—nt dt. Comme G a une limite
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finie en +00 on voit que pour tout x > 0 on a F(z) = ac/ e "tG(t)
En quantifiant on montre alors que F(x) tend vers EmG F(0) lorsque
o0

x— 0t.

L’exercice suitvant donne une autre méthode pour le calcul de cette
méme intégrale, toujours a l’aide d’une transformée de Laplace.

4.28. Calcul de l’intégrale de Dirichlet (2)

. oo et N
Soit ¢(x) —/0 mdt ouzx > 0.
1. Vérifier que ¢ est continue sur [0, +oo[ et C* sur |0, +oo].

Calculer pour = > 0, ¢(x) + ¢"(x) pu15 hm o(x).
2. Montrer que pour tout = > 0, ga(x) = /+OO Mdt.

T t
+
3. En déduire que/0 -

(Ecole polytechnique)

> Solution. »
1. Posons pour (z,t) € R, f(z,t) = le—f—it?' C’est une fonction C*.
1 1
Pour tout z > 0, |f(z,t)] < gl Comme t +— 5e est

intégrable sur R, le théoreme de continuité des intégrales a parametre
permet de dire que ¢ est définie et continue sur R, .
6kf (_1)ktk67tz .

2 —
On a pour tout (z,t) € Ry et tout k > 0, w(a@t)— T

Fixons a > 0. Si x > a, on a

Az 7 T 1442

e~tat

1 ..
=o0 7] pour t voisin de +o0.

Cette domination par une fonction intégrable assure que ¢ est de classe
C! sur Ja,+oo[, et donc sur ]0,+oc[ puisque a est quelconque, et que

+ —tx
o'(z) = 7/0 o fe+ = dt pour tout x > 0. Comme on a pour tout z > a,

akf( 1| < e tost 1 ¢ voisin de +
—F T =0| &= our 01s1n de [ee]
ock Y S T2 2) P v

on montre de méme que @ est de classe C* sur ]0, +oo[. Il vient alors
pour x > 0

(z) +¢"(2) —/+OO o (1+t2)dt—/+oo e~tmdt = ~
v T Tye o T
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Enfin comme 0 < ¢(z)

N

+ 1
/0 Fetrdt = — pour tout z > 0 on a

Ime=0.

+oo sin(t —
2. Fixons z > 0 et montrons l'existence de ¢(x) = / = M
x
Soit X > z. On a

/X sin(t — z) i = /X sintcosxdt 3 /X costsinxdt
T t 0 t z t

X sint X cost
:cosx/ &dt—sinx/ ﬁd (%)
x t x

dt.

+ it
Les deux intégrales ont une limite en +o00 dés que / = %dt converge.
x

it

+
Lemme. L’intégrale /.'c - %dt converge.

Démonstration. Avec toujours X > x, on a en intégrant par parties :

X it X X it
@ it . i\ 12

1 %
< — —— 0. Donc le crochet admet e
X X—4o00

eiX

On a X

comme limite

it

1
lorsque X tend vers 4oc0. D’autre part, pour ¢ > 0, < = donc

it
t— 6—2 est intégrable sur [z, +oo[ par le théoréme de comparaison. Le
résultat en découle.

On a donc

400 o t— “+o00 t +0o0 t
Tﬁ(l’) = Mdt = COosx gdt —sinax %dt
x z -

sint Ccos

ce qui montre que ¥ est C> puisque t — et t —> T le sont

sur [x,4o00[. On a en particulier

i +oo gint 400 cost
P (x) = —cosz >t fsin:v-/ &dtJr ing 8T fcosm/ €O 4t
T z z t
+oo t +oo t
= fsinx/ ﬂdtfcosyc/ cos dt,
Ja t Pt i
+°°snt sinx | +° cost cos? x
W' (z) = —cosx/ e+ = —sma:/ dt +

= é —P(z).
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Par conséquent v, tout comme ¢, est une solution sur R% de I'’équation

différentielle linéaire d’ordre 2 : ¢y +y = L Les deux fonctions different
x

donc d’une solution de I’équation homogene associée et il existe donc
A € R et 6 € R tels que pour tout x > 0,

o(z) = Acos(z — 0) + ¥(x).

+ t t .
Or, (z) = cosx/ > sin —dt — blnl‘/ 7 COSt gy —> 0  puisque

+
/ > sint ——dtet / - Sl—nt dt tendent vers 0 quand z tend vers +o00. Nous

xr
savons que A cos(z — 0) a une limite lorsque = tend vers +oo seulement

dans le cas ou A = 0. Comme ¢ a bien une limite en 400, A est nul et

oo gin(t — )

Vo >0, p(r) = ¢(x) = / ; de |.
x
3. Nous avons ¢(0) = /0+OO 1itt2 = [arctant]d > = g Comme ¢

est continue sur Ry on a
= ¢(0) =lime = lim
2 0 '

+
et il suffit de prouver que lignd) = /0 - %ﬂtdt D’apres la question

précédente, on a pour x > 0,

+o° gint +° cost
Y(z) = cosx/ —dt — blnl‘/ —d
+oo si +
Pour le premier terme, cosx / > sint dt —— / > sint dt. Montrons
T t z—0 JO
que
T cost
blnl‘/ —dt —— 0
e t z—0
On a, pour z € |0,1],
+2° cost +% cost Ilcost
sino:/ —dt‘ sin x / —dt' +smm/ — | dt
z t 1 t 2 t
1
dt +° cost
gAsinersinx/ — avec A = / —d‘
1

< Asinz +sinz|lnz| < Asinz + z|Inz| — 0.

) ; _ oo sint
C’est ce qu’on voulait. On conclut donc que / Tdt 3| <
0
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Une autre intégrale célebre qui intervient trés souvent est l'intégrale

.2 . . .
de Gauss | e~ dx qui vaut /7. L’exercice suivant en offre une preuve
R
particulierement courte.

4.29. Intégrale de Gauss

2 2
1 ¢~ % (14t4)
On pose f(af) = A Wdt
1. Montrer que f est de classe C! sur R.
. N T 42 P too 2
2. Relier f/aF:z »—>/0 et dt et en dedulre/O et dt.

(Ecole polytechnique)

> Solution.

2 2
671 (1+t%)

1+ 12
En particulier, ¢(z,.) est intégrable sur [0, 1] pour tout x et pour tout
(x,t) € R x [0,1], on a
%(m,t) = —2ge 1+,

ox

1. La fonction ¢ : (z,t) € R x [0,1] — est de classe C!.

Or pour segment I de R, la fonction continue (x,t) — g—i est bornée

sur le compact I x [0,1]. Les constantes étant intégrables sur [0, 1], le
théoréme de dérivation assure que f est de classe C! sur I, et donc sur
R, la dérivabilité et la continuité étant des propriétés locales. De plus,
on a pour tout z,

f'(x)

1 1
—2;10/ e‘”2(1+t2)dt:—2x6_12/ et dt
0 0
xr
= —26_””2/ e‘“zdu,
0

grace au changement de variable u = xt.
2. On a donc pour tout z € R, f'(z) = —2F'(z)F(z). Comme f et
F sont C!, il vient

f(x) — f(0) = — /Ow 2F'F = F(0)? — F(z)? = —F(x)%

Comme F > 0, on a F(z) = ,/f(0) — f(z). Or f(0) = /01 131rtt2 -

arctan(l) = g et Em f = 0. En effet, c’est une conséquence du théoreme
o0

de convergence dominée car pour tout (z,t) € R x [0, 1],

1

0< ) € ——,
(1) 1412
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1 < s : —
avec t — e est intégrable sur [0, 1] et wglfoo o(x,t) = 0 pour tout

€ [0,1]. On obtient au final que lim F(x) = \/f = ﬁ, autrement
x—+00 4 2

dit
+o00
/ e dt = ﬁ .
0 2
4.30. Intégrale de Fresnel (1)
1. Montrer que / e 1 = / et calculer la valeur
commune. s >t2
+OC 67 Z K2
On pose pour t € Ry, F(t) = /0 de.

2. Montrer que F est continue. Etudier la limite de F en +oc.
3. Montrer que F est de classe C* sur R%. Calculer F/(¢) pour
t>0.

+oo .2
4. Montrer que /0 e"dt converge et calculer sa valeur.

(Ecole normale supérieure)

> Solution.
1. Les deux intégrales existent : on a des fractions rationnelles sans

pole réel de degré —2 et —4 qui sont donc des O ( ) lorsque x — +o0.

Jr
Notons 1= [ 505 e
— o0

. . . 1
droit d’effectuer sur cette intégrale le changement de variable y = - car

- On a par parité I = 2/0 - On est en

il est de classe C! et strictement monotone :

too dgp 0 1 dy oo g2
e s W Yy
/0 1+ a4 /+ool/y4+1y2 /o 1+y Y

z? dz
Toujours par parité, on obtient / P 1 de = R T Passons au
calcul de I'intégrale. On a d’apres ce qui précede et par parité
1 1
2 1+ 1+ =
z 1
I= 4+ dx:/ 7dx—/ 17“";&3
Ry 2% +1 2 + i(x—f) +2
x

L’application ¢ : x — = — % réalise un C!-difféomorphisme de R%
sur R. On en déduit que

I/*+ %dx/ﬂ{%}[arctan(fﬂer;?
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On obtient finalement

1 z? d / dx T
f— 7.17: = — |
Rz +1 rzt+1 /2

24,2
e(z+7,)t

2. On pose f(t,x) = = pow xz,t € Ry. Cette fonction est

continue sur Ri. De plus, pour t € Ry, on a

67(m2+i)t2

Va S RJ’_’

S S B ( 1 )

\‘.’E2+i‘_ £C4+1_ 22 )

Cette domination par une fonction intégrable nous assure de la continuité

de F. D’autre part, pour z > 0, on a tlim f(t,x) = 0. Le théoreme de
oo

2+

convergence dominée permet d’écrire

+oo
lim F(t):/ 0=0.
0

t—+oo
3. La fonction f est de classe C* sur (R%)?. Soit 0 < a < b. Pour
t €la,bf,ona

o) )
‘67{(15’30) = ‘—2te_(””2+1)t2’ — 2t < 2pe

Cette domination par une fonction intégrable nous assure que la fonction
F est de classe C! sur ]a, b] et finalement sur R puisqu’il s’agit 1a d’une
propriété locale. De plus, on a

—+o0
2 N2 .,2 2,2
e” @A qg = e / e " da.
0

F'(t) = —2t/+oo

0

Comme y = 2t est un changement de variable de classe C!, strictement
monotone, on peut 'appliquer dans la derniere intégrale pour se ramener
a celle de la gaussienne (voir exercice 4.29) :

. too d )
F'(t) = —2te_”2/ eV Y = re

0 t

- . +oo
4. Comme F admet des limites finies en 07 et +o0, /0 F’ converge.
Plus précisément,

—+oo +oo d
/ F’:limF—limF:—/ .
0 +o0 0 0 T+
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+ )
Autrement dit, nous avons /0 et dt = 1 /

NG

+oo  dx .
————, ce qui donne
0 2+

“+o0 . 1 +o0 .2 _ g
/ e_”2dt:—/ x4 Ydz = ﬁ(l—i).
0 VT Jo zt+1 22

+oo | T
En passant au conjugué, il vient / e’ dt = i(1 +i) | <
0

2v2

En particulier, on a

—+o00 9 T —+o0 5
/ CcoS X dx:,/f:/ sin ¢ dx.
—o00 2 —o00

L’énoncé donne un autre calcul de ces intégrales a l'aide d’une
forme différentielle. Cette derniére est complere au sens ot elle s’écrit
w(z,y) = P(z,y)dr + Q(z,y)dy avec les fonctions P,Q : R? — C
de classe C'. On remarquera qu’en faisant intervenir simplement les
parties réelles et imaginaires de P et Q, on peut écrire w(x,y) =
wi(z,y) +iwe(x,y), wi et wy étant des formes différentielles classiques
(de R? dans L(R?,R)). Il apparait alors que les théorémes usuels sur les
formes différentielles (en particulier, le théoréme de Poincaré et la nul-
lité d’une intégrale curviligne sur un lacet d’une forme eracte) restent
valables pour ce genre de forme différentielle < complexe >.

4.31. Intégrale de Fresnel (2)

1. On considere la forme différentielle w définie sur le plan R?
par : (z,y) —> e dz = e~ (@)’ (dz+1idy) ot z = x +1iy. Montrer
que l'intégrale curviligne sur le contour délimitant la portion du
disque fermé centré en 0, de rayon R entre 'angle # = 0 et ’angle

9 = g est nulle. En déduire /joo e dz.

o0
2. On pose F(t) = /]R i 4y pour ¢t > 0. Montrer que F est
dérivable sur R? .
3. Donner une équation différentielle vérifiée par F.
4. FEn déduire F.
(Ecole normale supérieure)

> Solution.
1. Voici pour commencer une figure représentant le contour de
I’énoncé. On choisit de l'orienter dans le sens direct mais cela importe



224 CHAPITRE 4. INTEGRALES GENERALISEES

peu puisque l'intégrale de w sur le contour va étre nulle (changer ’orien-
tation change l'intégrale en son opposée).

A

Pour montrer que l'intégrale curviligne est nulle, il suffit de vérifier
que la forme w est exacte. Comme R? est étoilé, le théoreme de Poincargé
nous dit qu’il suffit de vérifier qu’elle est fermée. Posons P(z,y) = e~*

et Q(z,y) = ie* pour z =z +iy, (z,y) € R2. On a

P . 2 . 2
g—y = —2i(x + iy)e_(””“y) et g—(j =3 (—2(1‘ + iy)e_(:”“y) ) .

Ce calcul peut s’effectuer en écrivant e = eyz_xze_giwy, en dérivant
par rapport a y (resp. x) et en regroupant les facteurs pour faire ap-
paraitre a nouveau e~ (@+iv)*, Cependant, il n’échappe pas au lecteur que
Uon obtient (pour la premiere) ce que 'on calcule si on dérive formelle-
ment y — T + iy —> e~ @+)* comme composée de fonctions puisque

d(z + iy)? de=*"
(x;ryzy)—Zi(:chiy) et iiz = —ze”.

1l faut étre alors conscient que mous sortons du cadre du programme
des classes préparatoires puisque la seconde fonction est une fonction
dérivable de la variable complexe : z — e, On peut retenir que l'on
définit de maniére analogue au cas réel les fonctions dérivables de la
variable complexe définies sur un ouvert de C et a valeurs complexes :
on parle alors de fonctions holomorphes. Les fonctions développables en
série entiere sont holomorphes sur leur disque ouvert de convergence
(et la dérivée s’obtient par dérivation terme da terme). Les théorémes
d’opérations restent valables, ainsi que celui concernant la dérivée d’une
composée® ce qui justifie le calcul proposé.

3. Et la premiere fonction peut étre de la variable réelle comme ici.
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On a bien g—P = 2—3 et la forme w est effectivement fermée.

Le contour C étant orienté dans le sens trigonométrique on parametre
le rayon pour § = 0, par x = ¢t et y = 0 (autrement dit z = t) avec
t € [0,R], arc de cercle par x = Rcost, y = Rsint (autrement dit

z = Re'!) avec t € [0,7/4] et enfin le rayon pour 6 = % par x =t cos %

et y = tsin Z (autrement dit z = te’™/*) avec t € [0,R]. On a donc

R 4 R
]{ e " dy = 0= / et dt + /W/ 67R282”Ri6”dt — / e~ eim/Aqt,
c 0 0 0

Montrons que le deuxieme terme tend vers 0 lorsque R — 4+00. On a

/ﬂ-/4 67R262”Rieitdt < R/Tr/4 67R2 cos 2tdt _ % /TF/2 €7R2 COS Uy,
0 0 0

En faisant le changement de variable v = g —u et en utilisant I'inégalité

. . 2 o
classique sinv > = v sur [0,7/2], il vient
m

71'/2 2 7T/2 2 . 7T/2 2R2v
/ €7R COS Uy — / efR sinv 4, < / e T d’U,
0 0
ce qui implique

/2 2 +oo 2R2y e
/ e RIcosuqy < / e 7 dv= PR

Ainsi, on a /Oﬂ/ e R Rieitdt = 0 <%) qui tend vers 0 quand R

tend vers +00. On en déduit que (voir l'exercice 4.29 pour le calcul de
I'intégrale de Gauss)

lim ! et eim/Aqt = /+°° e dt = VT
R—+400 Jo 0 2

4 )
Autrement dit, U'intégrale /0 et 4t converge (sans que l'intégrande

N

soit intégrable) et sa valeur est 76’”/ 4. Par parité et en passant au

. , , . +oo iz
conjugué, on en déduit que / "™ dx converge et que
— 00

1+
V2

2. La fonction f : (t,z) —> ei=D7" est de classe C*° sur R% x R.

Pour (t,z) € R xR, |f(t,z)| = et =0 (%) quand z tend vers +o0

+oo .
/ e dy = /re™ 't = /7
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ou —oo. On en déduit que f(¢,-) est intégrable sur R par le théoreme de
comparaison. De plus, si on fixe a > 0, pour ¢ > a, on a la domination
suivante

2 —ta? 2 —az?
=z’ < x%e .

of
a(ta 9:)

)7x2e(i7t):1:2

.s . s 12 1
Cette derniere fonction, indépendante de ¢, est un O <x—2> en +o0o et en

—o0 : elle est donc intégrable sur R et en vertu du théoreme de dérivation,
F est de classe C! sur [a,+oo[ et finalement sur R puisqu’il s’agit la
d’une propriété locale. Pour ¢ > 0, on a

F'(t) = — / 22e(=07% 4y,
R
3. Par intégration par parties on a, pour A < B,

B . ) B B
/ 2.2(i — t)ze D" dz = [xe(’*t)wrz] _/ (=12 40
A A A

Lorsque A tend vers —oo et B vers 400, le crochet tend vers 0 par
croissance comparée et en passant a la limite

20— OF'(t) = F(1) |

4. La fonction F est solution sur 0, +oo[ de I’équation différentielle

r= 1 yetcomme 1 —__tFt ____¢ — :
LT 20—  20+2) 20+) 20+82)

il existe une constante C telle que pour tout ¢ > 0,

1
2

—5tiarctant

F(t) = Cexp (7% In(1 +t?) — Zarctant) _ C

e
2 (1 + t2)1 /4
Il est naturel de penser que si F admet une limite en 0, il s’agit de
oo . 2 . 22 ., .
e dz. Comme la fonction x — €** n’est pas intégrable, il est ex-

clu de le démontrer directement a I’aide du théoreme de convergence do-
minée. Nous allons classiquement utiliser une intégration par parties pour

. - too
nous ramener a des fonctions intégrables. On pose F(0) = / = ein®da.
— 0o
Pour ¢t > 0, on a

o 2 +oo . 2
F(t) = 2/ =07 qg 4 2/ =07 4y,
0 1

Comme (t,2) —s e(=D%” est continue sur Ry x [0,1] et |e@=97°| < 1

avec la fonction constante 1 intégrable sur [0,1], on en déduit par le
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7 N 3 . 7 1 ] — 2 .
théoreme de continuité que ¢ —— /0 e=97"dg est continue sur R, .

Traitons le second terme comme convenu par intégration par parties. Si
X>1lett>0,0na

X : 2 X . 2 1
/ =02 qg = / 2(i — t)ze VT~ dx
1 1 203 —t)x

[ oli—t)z? r L1 /x e(i—t)a:Qd
= ./L'
i i 2
20—tz  20—t)1 x
e(i—1) N 1 /+oo eli—t)z®
X—4o0 2(1—t)  2(i—1t) )1 2

dx.

X

Ainsi, le second terme s’exprime comme suit :

+oo (i—t) +oo (i—t)z?
/ e(“t)ﬁdm = e. + ,1 / € dz.
1 2(i—t)  2(i—1t) .1 x2

(i—t)x?

Cette derniere intégrale est bien définie puisque est majorée en

1'2
module par x—12 qui est intégrable sur [1, +o00[. Comme la majoration est

indépendante de t, on en déduit encore par le théoréeme de continuité
(i—t)z?

+
que t — /1 e = dz est continue sur R;. Au final, comme ¢t —
(i—t) (i—t)z?
e 1 +o0 e . . .
B — dz est continue, la fonction F est continue
26— " 26-1 h 22 ’ !

+ .
enOetonaC= /_:: e”ﬁde, si bien que pour ¢ > 0,
_ 7T 1T _—ZLarctant
F(t)—1/7me4e 2 . <

Voici maintenant une série de six exercices sur les intégrales a pa-
ramétre pour s’exercer a utiliser les théorémes de continuité, dérivabilité
dans diverses situations. De plus ils contiennent souvent des questions
de nature asymptotique (limite ou équivalent au bord,...).
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4.32. Intégrale a parameétre (1)

Pour x > 1 on pose f(x) = /1+Oo et dt.
1. Montrer que f est bien définie et étudier sa continuité.
2. Donner un équivalent de f en +o0.
(Ecole polytechnique)

> Solution.

1. Comme le module de I'intégrande vaut 1, il ne peut étre intégrable.
Si f est définie, 'intégrale en question doit étre semi-convergente.
C’est ce que nous allons vérifier par un changement de variable et une
intégration par parties.

Soit x > 1, X > 1et Ix = /1 ’ e dt. Faisons le changement de

variable u = t* (t = u!'/*) dans Ix :

1 X* elu

iu

v
Notons J, = /1 %du et procédons a une intégration par parties :
u x

el v v 1 el
Jo = Lu11/z]1 4’/1 z( —1/x) wl- —i/z du

Or la fonction v — 1;71/95 est intégrable sur Ry car son module est

U —> %W et 2 — % > 1. Donc J,, admet une limite quand v tend vers
w P

400 qui est

too  piu too  ciu
/1 e 1/de—ze —z(l—l/x)/l Wdu.

1 “+o00 U
Ainsi f(z) = XETM Ix = - /1 ey ————du est bien défini.
Etudions la continuité de f : pour utiliser les théorémes du cours, on
cherche a les appliquer sur des fonctions intégrables. On va donc utiliser

le fait que pour z > 1,

iet e

400
flo) =S —it/z—1/?) [

6'L‘u
u2-1/z

de sorte qu’il suffit de vérifier la continuité de = —— /1 du.

U

L’application (u,z) € [1,4o00[ X |1, +o0[ — 1;*71/93 est continue et si
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on fixe xg > 1, pour z > xg, on a la domination

et 1
Yu € [17 +OO[, wl-1/z < w2—1/70 .
1 . 1 s
Comme 2 — — > 1, la fonction u 17, est intégrable sur
Xo u xq

eiu
w2—1/z
nue sur [xg,+o0o[ et il en va de méme pour f. La continuité étant une

propriété locale, f est continue sur |1, +ool.

[1,400[ et le cours assure alors que z — /1 du est conti-

+OO ezu
2. Comme f(z) = = / ——75 du, il est naturel de penser que

P 1 +<>O et
f(z) est équivalent a = /1

‘s +oo gt
trer que la différence zf(x) — /1 —du tend vers 0 en 400 et que
u

400 eiu
J

du est non nul, ce qui prouvera la conjecture.
u

oo
Commencons par le dernier point : on sait que /0 S gy = g > 1
1
(voir les exercices 4.27 et 4.28 pour une preuve) et comme /0 sinu du <1
too o
car 0 < sinu < u pour u € [0,1], on en déduit que /1 Y Qu > 0 et
u

finalement, /1 2 o™
Notons pour > 1,

“+o0 eiu +o0 . 1 1

Une majoration par l'intégrale du module nous donnerait une intégrale
divergente. Nous allons encore une fois procéder par intégration par par-
ties. Notons pour X > 1,

X 1 1

. X .
ert 1 1 Xeivt (1—1/z 1
Ax(r) = [ <ﬁ - QL 5 (ﬁ - ;) du.
Le dernier terme correspondant & une fonction intégrable sur [1, +oo[ et
le crochet ayant une limite, on peut faire tendre X vers +o0o pour obtenir

ot L (1=1/x 1

=Pz (u)
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Pour > 2, on a
1 1
|z (u)| < B2 + 2

Comme HIE wz(u) = 0, le théoréme de convergence dominée assure
r—+00

1 +oo Liu
que A tend vers 0 en +oco. On conclut que | f(x) ~ 7/ ¢ dul <
T J1 u

4.33. Intégrale a parameétre (2)

—tx

On pose f(z) = /H;* \/;ﬁ
1

1. Etudier lensemble de définition, la continuité et la
dérivabilité de f.
2. Déterminer la limite et un équivalent de f en 0 et en +o0.
(Ecole polytechnique)

dt.

> Solution.

—tx

1. Soit g la fonction définie sur RxR* par g(z,t) = —¢ . Elleest
continue. Pour tout réel z, on a g(x, t) Koot N donc g(z, -) est intégrable
—tx 1
sur |0,1]. Si z < 0, alors, on a pour t > 0, g(x,t) = c >
0.1]. 81 2 < b s = s L

1 1
et comme ~ —, g(x,-) n’est pas intégrable sur [1,+o00]. En
—tx
revanche si z > 0, alors on a en +oo ; — = O(tl?) et g(z,-) est

intégrable sur [1, +o0].
Conclusion. La fonction f: 2z — /R* g(z,t)dt est définie sur RY .
T

La fonction ¢ est de classe C! sur R% x R% et pour (z,t) € R} xR,
on a

09yl Ve
ox " eyt Vi+1

Soit a > 0 fixé. Pour tout > a et tout ¢ > 0 on a la domination

9%

D (z,t) ’ el

La fonction t — e~ étant intégrable sur R% , on déduit du théoréme de
dérivation des intégrales dépendant d'un parametre que f est de classe
C! sur |a, +oo| et que, pour = > a,
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, _ \/Ee—xt
f(x)—/i—mdt.

Cela étant vrai pour tout a > 0, on conclut que f est de classe C' sur
R%.

2. e On commence par I’étude en +oo. Pour = > 0, le changement
de variable u = tx est légitime et donne

—Uu
——du
RY Vu? 4 ux

On en déduit que, pour z > 0, on a

flx) =

</ idu_i/ i
= RY /LU \/E i\/ﬂ

(la fonction u — S— est intégrable sur R%). On en déduit que
u

lim f(z) = 0. Montrons qu’en fait, on a

z—+oo
@) o~ f/* © du

On a o f(z) = /* h(:c w)du avec h(z,u) = \/%e*“. Pour tout
u >0, h(z,u) — lorsque x — +00 et de plus on a la domination

7
<=

suivante : |h(z, u)| = pour tout z > 0. Le théoreme de convergence

dominée permet de conclure.

Par le changement de variable u = v

, on obtient

e v 2 2
—du =2 eV dv= / e ¥ dv = /7 (cf. exercice 4.29).
/| G . A Vi ( )

. T
Conclusion. On a| f(z) ~ i
T——+00 x
e e ¥
e Quand z tend vers 0, ———— tend vers ——- La fonction
Q T Vet ux U

—u

u — S— est intégrable sur [1,+oo[ mais pas sur ]0,1]. On pressent

u
que f(x) tend vers +oo en 0 et qu'un équivalent de f(z) sera obtenu en
ne considérant que des intégrales sur |0, 1]. Précisons cela.
Pour 0 <z <2,ona

e " e v
x 2/ 7du>/ ——du
)  Vu? +ux R+u+g
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z\2 2 z e’ z e
car <u+ 5) > u® +uz, donc f(z) > e2 /[%;‘—oo[ Tdv?ez /g

—v

grace au changement de variable v = u + g La fonction v —» &

1l ,—v

v

n’étant pas intégrable sur ]0, 1], on a lim
x—0 z v

dv = 400. On en déduit
que }g% f(x) = +o0.

—v

1
~ - Ces fonctions étant positives et
v—0 P

non intégrables sur |0, 1], on en déduit que

1 ,—v 1 1
/ ¢ dv ~ —dv=—1In (£> ~ —Inzx.
z v z—0 z v 2/ x—0

—v

€ dv, on obtient donc
v

e
On peut dire plus car

e 7l
.« 127 . z

En considérant la fonction f; : z — e> /m

3

f(z) = fi(z) pour 0 < x < 2 et fi(x) No—lnm.

r—r
Mais, d’autre part, on peut écrire, pour z > 0,

—Uu

e_u
= ——du + ———du
/ vu? +uz [1,+00] \/u2+ua:

/m /Hm[ o du= o).

. 1 1
On calcule facilement /

0 VuZ+ur

z 2
/ m {1““2““ “”3]

1+ 2 4Ttz
=1 2— ~ —lnx.
z—0

2

On a donc f(z) < fo(z) pour > 0 et fo(x) ~ —Inz. Comme f est
z—
encadrée par deux fonctions équivalentes en 0 on a

flz) ~ —Inz| <
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4.34. Intégrale a parameétre (3)

dt.

sint
Pour z > 0, on pose s(z) = /]R*+ o
1. Montrer que s est continue sur RY .
2. Donner un développement de s en série de fractions ration-
nelles.

3. Montrer que s(x) ~ % au voisinage de 0.

(Ecole polytechnique)

> Solution.

1. Considérons I'application ¢ : (z,t) € R} — sin

€ R. Pour
ert — 1

1
x>0, |p(x,t)] = — lorsque t tend vers 0 et
x

e¥t — 1 t—+oo 2

1 1
ol t)] < e =o(5).

On en déduit que, pour tout x > 0, la fonction t — (z, t) est intégrable
sur R : s est définie sur R .

La fonction ¢ est continue sur RiQ. De plus, pour tout a > 0, on a,
pour = = a,

_ |sint| |sint|
|g0(l',t)|— ea;t_l 2 e‘”—l -

lp(a, B,

la fonction t — [¢(a,t)| étant intégrable sur R* (relation de domina-
tion). Le théoréme de continuité sous le signe / permet d’affirmer que

s est continue sur [a, +0o[. Cela étant vrai pour tout a > 0, s est donc
continue sur RY .

2. On va utiliser le développement en série entiere de — o On a,
pour (z,t) € R,
sint et . = R
o(x,t) = 1 omet = sinte " Z — Z sinte ",
n=0 n=1

Soit ¢ > 0 fixé. Pour n > 1, la fonction f,, : t — sint e~ "*! est intégrable
sur R% et on a :

-1
—nx—+i 14 n2z2

/ fo=Tm [ et = Im
RY RZ

Il faut maintenant justifier linterversion de la sommation et de
I'intégration. Le théoreme d’intégration terme a terme ne s’ap-
plique pas bien car il est difficile d’avoir mieux que la majoration :
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1
—naxt _ s . .

/Ri Iful < /R* e dt = . et la série harmonique diverge. On va

plutét utiliser le théoréeme de convergence dominée en ’appliquant a
n

la suite des sommes partielles. Posons S,,(t) = > fr(¢). La suite (S,)
k=1

converge simplement vers ¢(x,-) sur R} et on a la domination suivante :

1 — e—nwt
et —1

| sin ¢|

et — 1

Vn > 1,Vt >0, [S,(t)] = sint

n
sint Z ekt
k=1

La fonction majorante est intégrable et indépendante de n. On a donc,

iozo !
s(z) = —
ol S n2z2

3. Pour déterminer un équivalent de s en 0T, on utilise le
développement de la question 2 et une comparaison série-intégrale. Soit
x>0.PourneN,ona:

1 </ dt < 1
1+ (n+1)222 = re 1+ 222 S 1+ n2a2

En sommant les inégalité obtenues quand n décrit N, on obtient

too dt too e
———— < s(x) < ————, c’est-a-dire
/1 14 222 (@) /0 14222’

1 “+o00 1 1 “+oo 1
- ——du < <*/ —du,
x/l 1+ u? u < s(x) x Jo 1+ u? Y

™

(” ¢ )< (2) <
— | = —arctanz | < s(z) < —-
2 2z

X

. P m
Conclusion. On en déduit que |s(z) ~ — | <
z—0+ 2T

4.35. Intégrale a paramétre (4)

Soit f continue et intégrable sur R. On suppose qu’il existe M > 0
telle que, pour tout x > 0,

itr
[ sl < .
R |7
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1. Montrer que la fonction ¢ — tf(t) est intégrable sur R.
2. Calculer la limite en 07 de h(z) = /R f(t)dt.
(Ecole polytechnique)

elt(t -1

> Solution.
1. On a, pour x > O et t € R,

|ezt

‘1' O < 21F0)], co qui

justifie I'existence de / u |f(t )|dt On a, pour (z,t) € R?,

\eit’” _ 1| — |€itx/2 _ e—itw/2| -9

. tm‘
sin —| .
2

La fonction sin est concave sur [O, g] donc sint > 2 sit e [0, g}
7T
D’oti on déduit par imparité que |sint| > I | si ¢ <

1 ) .
Pour n € N*, on prend x = = dans la relatlon donnee dans I’énoncé
n
et on obtient :

M}/Zn
JR

On obtient donc, pour tout n € N*,

[ o< 5

Cela montre que la fonction ¢ — ¢f(t) est intégrable sur R.
itr
2. Soit ¢ : (z,t) — & - 1f(t) pour x > 0 et t € R. Pour ¢
fixé, p(x,t) tend vers it f(t) lorsque x tend vers 07. De plus, la fonction
u — e étant 1-lipschitzienne par le théoréeme des accroissements finis,
on a la domination |p(x,t)] < |tf(t)] pour tout > 0. Comme cette
fonction est intégrable d’apres la question 1, le théoréeme de convergence

sm—’|f )|t > /m ¥|f(t)|dt.

—Tn

t mn
in — t)|dt > 2
sin 2n' s@ldt > [ 2n

dominée permet de conclure que lim h(z) = z/ tf(t)dt. <
z—0+t R
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4.36. Intégrale a parameétre (5)

+o0 dt
On pose f(x) :/0 TEi e Powr > 0.

1. Montrer que f est de classe C! sur ]0, +o0].
2. Déterminer les limites en 0 et en +oco de f.
3. Donner un équivalent en 0 de f.

(Ecole polytechnique)

> Solution.

. 1 .
1. e La fonction g : (v,t) € R}? — Tr i est continue sur

R*+2.Soita>0etx>a.0na
I4+t4+t*TP > 14+t =14t sio<t <1,

T+t 4+ TP > 14" > 14+t sit> 1.

On a donc, pour tout ¢ > 0,

1
0<g(z,t) < W

La fonction t +—— étant continue, intégrable sur R7 et

1+ tott
indépendante de x, le théoréme de continuité sous le signe / s’applique :
la fonction f est définie et continue sur [a,+oo[. Cela étant vrai pour
tout a > 0, la fonction f est définie et continue sur R? .

e De méme, la fonction g admet sur RiQ une dérivée partielle par
rapport a z. Pour (z,t) € R’;Q, on a :

g Intt=+!
()=
oz (1+t+1o+1)2

et cette fonction est continue. Soit encore a > 0, x > a et t > 0. On a
alors :

0y e+t [Int| [Int|

9 (4, = m] < < ~

Ox (I+t4t=th)2 = 14t =+ = 14 totl
La fonction ¢ : t — % est continue et positive sur R%}. On a
o(t) Koot |Int|; la fonction ¢ — |Int| et donc ¢ est est intégrable sur

—

. Int 1 .

10, 1]. De méme, (1) LYo AT = © <?§1T§) et la fonction ¢ est donc

intégrable sur [1, +o0l.
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Donc ¢ est intégrable sur R7 et indépendante de x. Le théoreme de
dérivation sous le signe / s’applique : la fonction f est de classe C' sur

[a, +o0[ et
Int ¢+
)= [ -t
/(@) /Ri (14t +t=+1)2

Cela étant vrai pour tout a > 0, f est de classe C' sur R%.
2. Calculons la limite de g(z,t) quand = tend vers +00. On obtient
%H pour 0 < t < 1, % lorsque t = 1 et 0 sit > 1. On a vu dans

. 1 P
la question 1 que |g(x,t)] < T Powr tout x > 2. Le théoréme de

convergence dominée permet donc de dire que

. . oo Lode
Jm fo) = tim [ atet) = [ g =2
On a lim g(z,t) = — is 1a fonction  —» —L— n’est
n a limg(z, =11 mais la fonction 1T o n’est pas

intégrable sur R* . On soupgonne que lin%) f(z) = 400. On le démontre.
T—r
Onapourt>1etz >0,

+1 +1
Lt 771 <317 et done g(2,1) > ooy

On en déduit que, pour z > 0, on a

1 1

+oo +oo
> > - - .
flz) > /1 g, 0)dt > /1 St = o

On obtient lim f(x) = +o0.
xz—0t

3. Cherchons un équivalent de f(z) en 0. On a, pour z > 0, d’une
part,

1 1 dt
0< m,tdté/ —— =1n2,
0 9(z,t) o 1+1¢

et d’autre part,

0 too dt +oo d +oo dt
< T st)dt = : :
/1 ot /1 9(,1) /1 (1 +t+ ) (t + ¢ 1)

Foo di
< — =1
/o

ey + .
Cela montre que la différence f(x) — /1 = % est bornée. Comme

f(z) tend vers +o00 en 0T, on en déduit que

oo dt
f(x)x%+A t_;'_ta;-&-l'
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Calculons cette derniere intégrale. Le changement de variable u = Int
donne, pour x > 0

“+o0o dt du —+o0 e—ux
/ = = / —du
J1 ttEtl R, 14 ev® 1 1+4euz

1 T In2
= [—f In(1+e %) =12
x 0 x
. . P In2
Conclusion. On obtient ’équivalent | f(z) ~ —|
z—0t T

4.37. Intégrale a4 parameétre (6)

1. Soit (an)nen une suite réelle avec a, = o (l) en l'infini.
n

Montrer que pour x tendant vers 17, on a

Z anx” = o(ln(l — x)).

n=0

1
2. Soit p €]0,1[. On pose I, = /0 = t2()i§1 — - Donner

un équivalent de I,, lorsque p tend vers 1~
(Ecole polytechnique)

> Solution.
1. Tl s’agit d’un lemme classique (voir Uexercice 3.23 du tome analyse

n

“+ o0
2) puisque Y % = —In(1 — z). Il convient de le redémontrer. Par
n=1

comparaison, la série entiere définissant f est de rayon supérieur ou égal

< . . € .o

a 1. Soit € > 0. Il existe ng > 1 tel que pour n > ng, |a,| < =- Ainsi,
n

on a pour z € ]0, 1]

no—1 no—1 +o0 "
Zanx —|—fo Zanx” —|—EZ—
n=ng n=0 n=1 n
no— 1
Z anx"| +elln(l — x)|.
n=0
nofl
> apx”
Comme lim 7=0 | _ 0, pour z proche de 1 par valeurs inférieures,
e—1- |In(1 — z)|

on a
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|f(z)] <elln(l —z)| +¢|In(l — z)| = 2¢|In(1 — z)|.

On conclut que pour z tendant vers 17, f(z) = o(ln(1 — x)).

2. Il convient de vérifier que I, est bien définie pour p € ]0,1[. La

fonction t — L est continue sur [0,1] et en 1, elle
(= 2)(1— e

est équivalente a ! - Elle est donc intégrable en vertu du

201 — p2)V1—1t
1 +

théoréme de comparaison. Pour # € [0,1], —= = ¥ (_7),)2" et
1+z n=0

donc formellement, nous pouvons écrire

L, = / /17_ 2 Z < 1/2) 2n42n 44
n n ! = 2n
S (3 ([ i)

Laissons pour plus tard la justification de l'interversion série-intégrale

et notons «,, = dt. En posant z = arcsint (changement de

1
=
variable licite car de classe C! et strictement monotone), on trouve que
o, = /0 2 gin?” zdx. On reconnait 14 les intégrales de Wallis d’indices
pairs (cf. exercice 1.43 du tome analyse 2). Il est alors classique de vérifier
par une intégration par parties que 2n«a, = (2n — 1)a,_1 et on obtient

2n —1 (2n—-1)(2n—=3)---1
Ap = ————Qp_1 = o,
" o ! (2n)2n—2)---2 °
. 2n)! =« . . .
ce qui donne «,, = 1 3 o0 faisant apparaitre les facteurs pairs pour

obtenir (2n)! au numérateur. Par ailleurs, on a par la méme opération

W n ) /2241 (1/24n-1) 13- (2n—1)
(=1) —-1/2) — n! N 2!

(2n)!
An(nl)2’

Finalement, nous trouvons

_ m X (2”)!2 ’ 2 2n
L= 5;0 (4"(11!)2) Z On

En utilisant au choix la formule de Stirling (prouvée dans 'exercice 4.24)

2
ou I’équivalent classique des intégrales de Wallis /0 "/ sin” tdt ~ ,/ %
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(voir I'exercice 1.35 du tome analyse 2) on obtient o, ~ ,/ % et le

coefficient de la série entiére en p ci-dessus est donc équivalent a o
n
+oo u2n
D’apres la premiere question, la différence entre I, et > =— est
n=1 47

—+oo 2n

négligeable devant In(1—p). Or, > ’l;n = —% In(1—p?) ~ —% In(1—p)

lorsque p — 17. On conclut donc que lorsque p tend vers 17, on a

n=1

1
I, ~ —iln(l — )|

Il reste a justifier l'interversion série-intégrale pratiquée au début de la

n ) (ﬂt)2n

_1/2 /1 — t2 )
“+oo

fonction est positive, intégrable sur [0,1[ et > f, converge simplement
n=0

. . 1 2
sur [0,1] vers une fonction continue. Comme /o fn =3 ;agnuzn

question. Si on appelle f,, la fonction ¢ — (—1)"( cette

est une série convergente, le théoreme d’intégration terme a terme nous
assure de la validité de l'interversion. <

L’énoncé suivant concerne la trés importante transformée de Fou-
rier et fait démontrer la formule d’inversion dans l'espace de Schwartz
des fonctions de classe C*° dont toutes les dérivées sont a décroissance
rapide.

4.38. Inversion de Fourier

Soit S T’ensemble des fonctions de R dans C de classe C,

vérifiant, pour tout (k,n) € N?,  lim x"f(k)(x) =0. Pour f €S8
|z| =400
et y € R, on pose

) = —— z)e Vdx
£ )= 5 [ f@)e e

On dit que f* est la transformée de Fourier de f.
1. Montrer que f* € S.
2. Soit f € S telle que f(0) = 0 et g la fonction définie sur

R par g(z) = /01 f/(tz)dt. Montrer que g € S et en déduire que
Jo 1 w)dy = 0.
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3. Soit fy:z+— e‘é. Montrer que fi = fo.
4. Soit f € S. Montrer que f**(0) = f(0) et en déduire que,
pour tout réel z, f**(z) = f(—x).
(Ecole polytechnique)

> Solution.

1. Remarquons, tout d’abord que S est un C-espace vectoriel, et que
si f est dans S alors toutes les dérivées de f sont dans S, ainsi que les
fonctions de la forme x — 2" f*)(z). Tout cela résulte aisément de la
formule de Leibniz.

Soit f € 8. La fonction ¢ : (x,y) € R? — f(z)e ¥ € C est C*°.

k
Pour (z,y) e R? et k € N, on a ZTf (z,y) = f(x)(—iz)*e ¥ et donc
8k

a—yf(x,m = | f(2)||z]*

et la fonction o — f(x)x* est intégrable sur R, puisqu’au voisinage de
Pinfini, f(z) = o ﬁ) . On en déduit que f* est C* sur R et que,
pour k € Net y € R,

M) e~ i"dz.

\/ 27r/ us

Des remarques précédentes, il résulte que hy : x — f(z)(—iz)"
appartient a S et que f*(k) est égale & (hy)*. Pour démontrer que f* € S
il suffit donc de vérifier que f* est a décroissance rapide i.e. que pour
tout n € N, on a

lim " f*(y) =

[y|—-+o0

En effet, en appliquant cela a hjy on obtient que les dérivées successives
de f* sont aussi a décroissance rapide.
Pour tout y € R, on obtient, en intégrant par parties,

yf*(y) = \/%/Rf(x)ye’”ydz
= = ([r@te =7 - [ r@=ie=ay)

Z/ fl@)e™™dz = i(f')*(y),
R

1
N V2T

car |f(z)ie Y| = |f(z)| = o0 (%) quand |z| tend vers l'infini.
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En réitérant le procédé, on obtient, pour n € Net y € R,

1 n+1 .
n+1 px — n+1 (n+1) =Ty .
v = (o) e @e

On en déduit la majoration

n+1
rrwi< () LI @l .

wrwi<s (=) [

On en déduit que ‘ ‘lim ly™ f*(y)] = 0. Cela suffit pour conclure que,
y|——+oo
pour tout f € S, f* € § autrement dit que S est stable par la transfor-

mation de Fourier.
2. e La fonction f’ étant C*°, la fonction (¢,z) € [0,1] xR — f'(tx)

est également C*°. On en déduit que g est C* sur R.
t=1

On remarque que, pour x # 0, on a g(x) = {l f(tz)} = M, car

T =0 T
f(0) = 0. En appliquant la formule de Leibniz, on démontre que, pour
tout £ € N, il existe des constantes ag, a1, ...,a telles que, pour tout

x #0,

Z akf(]) = y+1 et donc, pour n € N,

" (k) Zakf(J ol

Par hypothése, pour (k,n) € Nx Z, on a lim z"f® (z)=0 (cest

|z|—+o00
vrai, pour n € N et donc a fortiori si n < 0). On en déduit que

lim a2ng® )( ) = 0. Donc g appartient & S.
|| =00

e D’apres la question 1, on a, pour tout y € R,

*\/ — 1 —izy
(4 ()= 7= / g(@)(—iz)e ™ da.

On remarque que, pour tout réel x, zg(z) = f(x). On 'a déja démontré
pour x # 0 et pour x = 0 cela résulte de f( ) = 0. L’intégrale précédente

r f—if(@)emimvda = —if*(y).

[ rrwdy=i [ "Wy =0,

devient : pour tout réel y, (¢*)'(y) =
On en déduit que
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car lim g* = lim g* = 0, puisque g est dans S.

T oo

Conclusion. Si f(0) = 0, alors /R f=0.

3. On note que fy est C*™ et que, pour tout &k € N, il existe un
polynéme Py, tel que, pour tout = € R, f*)(z) = Pk(x)e_é. On en
déduit alors que liLn " f (k)(x) = 0, par croissance comparée. Donc f

x (o]

||
appartient a S.

On a, d’apres la question 1, pour tout y € R,
S 4
Hy) = / e” 7 (—ix)e”"da.
R
En intégrant par parties, on obtient

*/

Cette équation différentielle permet de dire qu’il existe C € C tel que,
pour tout y € R,

+oo 2 .
- /Re‘xzi(—iy)e‘”ydy) =—yfo(y).

— 00

2
fily)=Ce .
Sachant que /Re’%dx = /27 (voir l'exercice 4.29), on en déduit
f5(0) =1, et donc C = 1.
Conclusion. On a f§ = fo.
4. o Si f(0) =0 le résultat résulte de la question 2 puisque

£7(0) = \/%/Rf*(a:)dx —0.

Dans le cas général on se ramene a ce cas particulier en posant h =
f = f(0)fo. Cest une fonction de S puisque S est un C-espace vectoriel.
L’application f —— f* étant linéaire, on a :

W=7 = fO0)f" = 1 = £(0) fo-

Sachant que h(0) = 0, on peut affirmer que A**(0) = 0. On en déduit
que
f7(0) = f(0)£0(0) = £(0).
e Pour établir la formule d’inversion on va se ramener en 0 par une
translation. Pour z € R fixé, considérons ’application

foit— flx+1).

Il est clair que f, est dans S puisque fé’“)(t) = f)(x +t) pour tout k

donce . "
7 £ (1) = (th) (t+2)"F B (2 +4) =0
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lorsque |t| — 400. On obtient alors, pour tout y € R :

£20) = <= [ Ha et = o [ e = e ),

puis pour tout z € R,

f;* m/ z:ryf 7iyzdy _ f**(Z o iL’)

On a alors, d’apres ce qui précede, pour tout x € R,
f(@) = f2(0) = f;7(0) = /™" (—=).

Conclusion. Nous avons donc démontré que 'application f —— f*
est un automorphisme de 'espace vectoriel S. La bijection réciproque
est I'application f — g ol g est définie par g(z) = f*(—=z). <

4.39. Développement en série d’une transformée de Laplace bilatérale

Soit f : R — R, continue non nulle. On suppose qu’il existe
a > 0 tel que pour tout = € |—a, af, t — f(t)e®" est intégrable sur
R, et on pose L(z) = /R f(t)e®tdt.
1. Montrer que L est développable en série entiere en 0 sur l'in-
tervalle | — «, af.
2. Montrer que InL est convexe.
(Ecole polytechnique)

> Solution.
1. Soit z € |-« [ On développe en série I'exponentielle pour ob-

OO T tn
tenir L(z / f) dt. En supposant licite I'interversion de

Iintégration et de la Sommatlon il vient

+oo "
zgm/Rf(t)t dt

ce qui constitue le développement en série entiere souhaité. Il reste a
justifier I'interversion. Pour cela on utilise le théoréme de convergence

dominée pour la suite des sommes partielles de la série. Le réel x étant
, n t t . .
fixé, posons S, (t) = Y ‘TT{() La suite (S,,) converge simplement sur
k=0 !
R vers la fonction t — f()e** et on a, pour tout n et tout ¢t € R,
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n k|+|k
t t
a0l < 3 PRI OL < gy el < gy (et 4 7).
k=0 :

Par hypothese cette fonction est intégrable sur R et le calcul précédent
est donc justifié.

2. Comme f est continue positive et non nulleon a L > 0 et InL est
bien définie. Pour prouver la convexité de In L nous allons naturellement
étudier le signe de sa dérivée seconde. Comme L est développable en série
entiere, elle est en particulier C* et ses dérivées successives s’obtiennent
en dérivant la série entiére terme & terme. On a donc pour z € |—a, «f,

xnfl

+oo
I/ (2) = ; " /R Foendt

ce qui donne, si on peut échanger les sommations,

+o00 P i 1
1 (z) = /R S I pgar = /R £ F(¢)dt.

|
n=0 n:

Pour justifier le calcul on procéde comme dans la premiére question et il
suffit pour cela de justifier que la fonction ¢t — te™ f(t) est intégrable
sur R. Pour cela on choisit 8 tel que |z| < 8 < a. Au voisinage de 400
on a te® f(t) < ePt f(t) et au voisinage de —oo on a te® f(t) < e P f(t)
ce qui permet de conclure.

On aurait également pu appliquer directement le théoréme de
dérivation sous la signe intégral.

On montre de méme que si z € |—a,af, L"(z) = /RthItf(t)dt. Un
y _ LI 1"

2

de l'inégalité de Cauchy-Schwarz, on obtient

calcul immédiat donne (InL) - Orsiz € ]—a,al, en vertu

2

L/(2)? < U_:O |t|e“f(t)dt} . UR (|t|e%t\/%) (e%t f(t)) dtr

< ( /R et f(t)dt) ( /R et f(t)dt) — L (2)L()

ce qui donne (InL)” > 0 et InL est bien convexe. <

Les exercices suivants concernent plus particuliérement des questions
asymptotiques sur les intégrales généralisées.
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4.40. Comparaison d’intégrales (1)

1. Soit f, g :[1,4+00[— R, continues avec g > 0 non intégrable.
On suppose que f = o(g) en +oo. Montrer que /1 f=o (/j g).

2. Soit o, € C avec Re(a) > 0. On pose wg( ) = e®ah.
Montrer que pour z tendant vers U'infini, ¥g(x) ~ = / Pa(t)dt.

(Ecole normale supérieure)

> Solution.
1. Soit e > 0. Il existe A > 0 tel que pour tout z > A, |f(z)| < eg(x).
Dans ces conditions, on a

’/ f‘</ |f|<s/g<€/ g-
A A A 0

Comme g n’est pas intégrable, la limite de z —— /Oxg en 400 est +00

puisque g est positive. Quitte a changer A, on peut supposer /Oxg >0
pour x > A. Et dans ces conditions, on a

S A e ]
TR /g I
I
N

x assez grand, on a

Or le rapport tend vers 0 quand x tend vers l'infini et donc pour

x T
Cela prouve que pour x tendant vers +oo, on a /0 f=o (/0 g)-

2. Notons ay (resp. 1) la partie réelle de a (resp. 3). Par intégration
par parties, on obtient pour z > 1,

a/ Pa(t)dt = [eo‘ttﬁr —ﬂ/ et P14,
1 1 1

On serait tenté de démontrer que la deuxieme intégrale est négligeable

devant la premieére, mais comme l'intégrande n’est pas a valeurs positives,
T

on va plutét montrer que /1 e®*tP~1dt est négligeable devant |e®*x”| =
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ez Remarquons que cette derniére quantité tend vers +o0o en +o0o
par croissance comparée puisque a; > 0 si bien que le terme constant
du crochet e® est négligeable devant elle. D’autre part, en la dérivant,
on trouve

de®1® 451 B
—a = ape® @ 4 ﬁleo‘lxxﬁl ! ~ a1 > 0.
€T r—+00

Cette dérivée est positive au voisinage de +oo. On démontre, en adaptant
tres légerement la preuve, que le résultat de la premiere question reste
valable si g est seulement positive au voisinage de +o0o et si f est a
valeurs complexes. Comme pour = tendant vers +oo, on a

de®r@ P
az,.f—1 _ a1z .61 —
ex 0 (e x ) o) (dx > ,

on peut affirmer que pour x tendant vers l'infini,

x z Jertifr
atyB—1 _ _ arx,.B1
/16 t dto(/1 a4 dt)o(e T )

Par conséquent,

r— 400

x
a/ pp(t)dt = e 2’ + 0 (e™2”) ~ ™2’ =yg(z). <
1

Notons que si l’on suppose dans la premiere question g intégrable,
alors [ lest aussi par comparaison et cette fois-ci, ce sont les restes qui

L. o0 +o0 . . . .
vemﬁent/m f=o (/I f) En effet, sie > 0, il existe A réel tel que

pour tout = A, |f(x)| < g(x) et en intégrant entre x et +oo, il vient

400 +oo +oo
/ f‘é/ |f|<€/ g
xT xT xr

ce qui prouve que le reste de f est négligeable devant celui de g. Dans
lexercice suivant, nous allons utiliser ces résultats d’intégration de la
relation o.

4.41. Comparaison d’intégrales (2)

zf'(z)
f(x)

Soit f : Ry — R7 de classe C'. On suppose que tend

vers 0 quand z tend vers 4o0.
1. Montrer que pour tout a > 0, f(azx) ~ f(z) quand x — +oc.
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x
2. Soit a > 0. Donner un équivalent de / f(®)t*1dt quand z
0
tend vers 'infini.
+o00
3. Soit a < 0. Donner un équivalent de / f(®)t*1dt quand

xr
x tend vers 'infini.

(Ecole polytechnique)

> Solution.

1. Fixons a > 0. Soit € > 0. Il existe A > 0 tel que pour x > A, on a
z|f' ()| flla)| o € :
< —, ce qui donne
/(@) 7(@) :

T
en intégrant entre x et ax :
€
</ —dt =¢|lnal.

[%

< e. En particulier pour z > A, on a

[z,ax] t
Ainsi (In J;((a;)) ‘ < gllnal pour > A. Cela traduit que la limite en 400
de In f(az) vaut 0 et par continuité de I’exponentielle, le quotient f(az)
f(z) f(x)

converge vers 1 en l'infini, autrement dit f(ax) ~ f(z).
2. La fonction g : t — f(¢)t*"! est continue sur R* et comme il
s'agit d'un O(t*~1) pour t tendant vers 0, elle est intégrable sur ]0, 1].

f'(=)

Par ailleurs, le quotient est négligeable devant % en l'infini. Donc,

f(=)

par intégration de la relation o, sachant que x — - n’est pas intégrable
sur [1, o0,

@ f! * dt

/ f—zo(/ —) =o(lnz),

1 f 1t

pour x tendant vers 'infini. Ainsi, In % s’écrit e(z) Inz avec 1+im€ =0
oo

et f(z) = f(1)2*®). On a f(z)z® ' = f(1)2* '+ et pour z assez
grand, a — 1 +¢e(z) > —let f(z)z* 1 > f(1)z~t = % Par théoréme
de comparaison, on en déduit que g n’est pas intégrable.

Soit & > 1. Par intégration par parties, on peut écrire

R

Or, par hypothese, en +oo, f/(t)t* est négligeable devant f(¢)t*~1 = g(t).
Donc la deuxieme intégrale est négligeable devant la premiere si bien que

/Oxf(t)taildt:‘/oxgw/lxg/w@.
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3. Prenons b € ]a,0[. Comme il a été vu précédemment, on peut
écrire f(z) = f(1)2°®) avec Ems = 0. Pour z assez grand, a—1+¢(x) <
o0

b—1et f(z)z® ! < f(1)ab ! = 2{1(2 Comme 1 —b > 1, la fonction

gt f(t)t*" 1 est intégrable sur [1, +oo[. Pour z < X, on obtient par
intégration par parties

o[- [ rot

La fonction t — f/(¢)t* est négligeable devant g, elle est donc intégrable.
De plus, pour X assez grand, on a 0 < f(X)X% < f(1)X® et par com-
paraison f(X)X* tend vers 0 quand X tend vers +00. On en déduit en
faisant tendre X vers l'infini

/:oog = _f@zt /:oo f’(t)ﬁdt.

a a

La deuxieme intégrale est négligeable devant la premiere, si bien que
pour x tendant vers 'infini, on obtient

/Jﬂ><> fye—tar ~ — L@

a

4.42. Comparaison d’intégrales (3)

. . e Y
Justifier 'existence et calculer /R evt (/le oo 7dy) dz.

(Ecole polytechnique)

> Solution.
-y

La fonction y — € est continue sur R* et intégrable sur tout
intervalle [a, +o0o[ avec a > 0. Il en résulte que la fonction
eV

frxr— —dy
[lz], 4o Y

est définie sur R* et paire. De plus, elle est dérivable sur R* avec pour
tout = > 0, f'(z) = —67 (et bien entendu f'(z) = —% six <0
puisque f’ est impaire).

Soit ¢ la fonction z — e*!f(x). Elle est continue sur R*. Pour

intégrer ¢ sur R on doit étudier son intégrabilité au voisinage de 0 et au
voisinage de +oo.
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e En 0 on a p(z) ~ f(x). Et il est facile de trouver un équivalent de
fen 0. Pour |z| <1, 0n a

1 e~y e Y
f(x) :/ —dy—l—/ —dy.
| Y (1,400 Y

-y
La fonction g : y — € est positive et n’est pas intégrable sur |0, 1];

ona, g(y) ~ —.Lethéoréme d’'intégration des relations de comparaison
y—0 vy

permet d’affirmer que

1 ,—y 1 1
/ e—dy ~ / —dy = —In x|,
] Y 220 Jiz| Y

d’ot l'on déduit que ¢(x) ~ —In|z|. La fonction In étant intégrable
z—

sur |0, 1], la fonction ¢ est intégrable sur [—1,0] et ]0, 1].
e Cherchons maintenant un équivalent de f en +oo. Pour x > 0, on
obtient, en intégrant par parties,

flx) = e’ +/[x Qdy.

z 4o y?

On remarque que

e Y 1 e Y 1
o< [ <[ s @ =o(w).

ool Y2 x Y

—z z(t—1)
7 . e e
On en déduit que f(x) ol o et donc ¢(x) el T On en
déduit que ¢ est intégrable sur [1,4+00] si et seulement si ¢ < 1.
—lz|
e Comme f est paire, on a de méme, f(z) ~ S— et donc
z——oco |z
ez‘(t+1)
o) ~ - . Par suite ¢ est intégrable sur | — oo, —1] si et
Tr—r—00

seulement si 14t > 0.
Conclusion. L’intégrale de I’énoncé, notons-la I(¢), est définie pour
tel-1,1].
Il nous faut maintenant calculer la valeur de I(¢). Pour commencer,
supposons ¢t # 0 et calculons J(t) = /R* @(x)dz. On obtient, pour 0 <
+

a < A, en intégrant par parties,
A 1 A A
/ e f(x)dx = n <[eztf(x)]a - / emtf’(:c)dx>

_ % <6At FA) = e f(a) + / * ew;_wdx> .

[
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On sait que

At At 67A eA(tfl)
f( ) A—>+oo ¢ A - A A—+o0

car t —1 < 0. On en déduit, en faisant tendre A vers 400, que pour

a>0,
efx(lft)
—e® f(a) + —dz
[y tool T

/ e f(x)dx = L

[or,+00] t
% (—e“tf(oz) + e_udu>
1

[(1-t)a,+oo] U
= (—eatf(a) + f(1 =t)a)),

en faisant le changement de variable u = z(1 — t) dans la deuxieme
intégrale. Pour calculer la limite quand « tend vers 0, on transforme
cette derniére expression :

—e*fla) + f(1-t)a =

) fe) + f((l—t)a) fla)
fla

(1-t)a T

.
fa /1 ta dx + /1 t)a T 7dx
/ 1

dx—|—ln

1-t)a
On sait que

(1—e") fla) ~ —atf(a) ~ —atlna —— 0.

a—0 a—0 a—0

—x

. -1, L
D’autre part, la fonction  — < étant intégrable sur ]0,1], on a :

«@ —r _ 1
lim ¢ dz = 0.
a—0 (1—t)a X
On obtient finalement
1 1
: xt _ .
Oltlg%) bl e’ f(x)dx = ; In 13

In(1—¢)
—
Calculons, toujours pour ¢ # 0, /R* e*t f(x)dz. Comme f est paire,

on obtient :

/* e f(z)dz = /R* e " f(x)dr = J(—t) = (1 +1)

. t

On conclut que J(t) = —
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1. 1+t
Finalement, on obtient, pour ¢ € |—1,1[\ {0}, | I(¢) = : In 17+t -

Il reste & calculer la valeur de I(0). Pour cela, montrons que la fonction
J est continue en 0. Soit a € 10, 1] et la fonction

F:(2,t) € R} x [—a,a] — €™ f(z).

La fonction F est continue sur (z,t) € R% X [—a,a], car f est continue
sur RY et, pour tout (z,t) € R% x [—a,a], on a

|f(z, )] < ™ f(a).

La fonction x —— €®* f(x) étant intégrable sur R* et indépendante de
t, on en déduit que la fonction J : ¢t — /R* e*t f(x)dx est continue sur
T

[—a, a] et en particulier en 0. On a donc

J(0) = }%_M

De la parité de f, il résulte que |1(0) = 2| <

Dans les deux exercices suivants on sera amené a utiliser, en
le démontrant, le lemme de Riemann-Lebesque pour des intégrales
généralisées. Nous renvoyons le lecteur a ’exercice 1.25 du tome analyse
2 pour la preuve de ce Tésultat dans le cas des intégrales définies sur un
segment.

=1

4.43. Calculs de limites

cosy

Vo

(Ecole polytechnique)

Continuité, limites en 0 et +o0o de f: z +—— /Ox dy.

> Solution.
e Montrons que f est bien définie en x # 0. Il s’agit de montrer que

9z 1y €[0,2] — —— est intégrable. Elle est continue, et lorsque
22 —

y tend vers z, (y € [0,z[), on a

cosy

V-

| cos y| | cos x|

" Je—dllotul o oly20l
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Comme y € [0, 2] — % est intégrable, d’apres le théoréme de
=Y
comparaison g, est intégrable.
Effectuons le changement de variable z = —y :
cos —r cos( T cosz
/ Y Tty / G2 B P B P
2)2 0 x? — 22
=—f(-z).

La fonction f est définie sur R* et est impaire. On I’étudiera donc sur
R%.

e Soit x > 0. Effectuons dans f(z) le changement de variable v = %
pour se débarrasser de la variable x dans les bornes d’intégration :

1 cos(gcu) _[! cos(zu)
fla) = va? -z 2 0 V1—u? du.
cos(zu)

Notons ¢(z,u) = pour z > 0 et u € [0,1[. A u fixé, 2 — ¢(z, u)

V1—u?
est continue sur R. De plus, pour tout 2 > 0 et u € [0,1], on majore

ainsi
1 1

[ela )] € s <

1
avec u \/% intégrable sur [0, 1. Il en résulte que x — /0 o(x,u)du

est continue sur R. Il s’ensuit que f est continue sur R* et que

1_ T
w11)1101+f / ©(0, u)du —/ m = [arcsin(u)]g = 5

On a donc | f(01) = f:ff( Bl

e La limite en +o0o est une conséquence du lemme de Riemann-
Lebesgue généralisé :

Lemme. Soit a < 8 dans R, f :]a, B[— C intégrable. Alors :

/ f(u) cos(zu)du —— 0.

Tr—+00

Démonstration. Soit ¢ > 0. Il existe a et b réels tels que a <a < b < f3

et . p
[+ i<
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Pour tout z réel, on a donc

<[in+

/ab f(w) cos(zu)du

+/ff|

B b
/ f(w) cos(zu)du / f(u) cos(zu)du

< t+e

Or, pour z assez grand, d’apres le lemme de Riemann-Lebesgue, on a

b
'/ fu) cos(zu)du‘ < e. Donc pour z assez grand, on a la majoration
a

< 2,

/j f(w) cos(zu)du

ce qui prouve le lemme.

On conclut donc que 1+im f=0=1im f|puisque f est impaire. <
o0 — 00

Le lemme est aussi vrai en remplacant cosinus par sinus, donc si
f:1— C est intégrable, on a

lim /f(x)e”mdm =0.
I

A—+oco

Ce résultat est encore utilisé dans [’exercice suivant.

4.44. Etude d’une intégrale indéfinie

Etudier la fonction F : o — /Om et/tdt.

(Ecole polytechnique)

> Solution.

Comme la fonction f : t — €'/t est continue sur |0, z], de module
constant égal & 1 avec z — 1 intégrable sur ]0, z], elle est effectivement
intégrable sur |0, 2] en vertu du théoréeme de comparaison. Comme f est
C sur R*, on en déduit qu’il en va de méme pour F. On a F(0) =0 et
|F(z)| < |z| pour tout & # 0, donc F est continue en 0. On a pour x non
nul, F/(z) = ¢/ donc F ne peut étre C* sur R. Etudions cependant la
dérivabilité en 0.

Si z > 0, on peut effectuer le changement de variable y = % qui est

t

de classe C! et strictement monotone :
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P 400 ezy/xd
)= .
@==[ “ray

Le taux d’accroissement de F en 0 vaut donc

+oo Liy/T
F(z) _ / e dy 0.
1

T y? =0+

en vertu du lemme de Riemann-Lebesgue pour les fonctions intégrables.
C’est la méme chose & gauche. Ainsi, F est dérivable en 0 et F'(0) = 0. <

L’ezercice suivant concerne le développement asymptotique du reste
de lintégrale de Gauss.

4.45. Série asymptotique (1)

On pose f(x) = /+oo e~ dt.
1. Donner un éqlglcivalent de f en 4o0.
2. Donner un développement asymptotique de f & un ordre ar-
bitraire dans ’échelle des fonctions xme_mz, m € Z.
n

3. On écrit ce développement f(z) = > ug(z) + o(u,(x)).
k=0
Etudier la convergence simple de la série de terme général wu,(x).
(Ecole polytechnique)

> Solution.
1. Procédons par intégration par parties. Soit 0 < z < X. On a

X X —t? X o—t°
2 _e2 1 e / e
dt = — —2t —dt=|———| — —dt.
/x ‘ /z (=20 5 [ 2t ] . 20

En faisant tendre X vers +oo, il vient

2 2
e T —+00 e—t

= - dto
/(@) 2z /z 2t2

42
t

e 2 EVERN s
Comme en +00, =o(e ") avec t — e~ intégrable et positive sur

2t2
[1,+00], le théoreme d’intégration des relations de comparaison assure

que, lorsque & — +00,
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On conclut donc que pour z tendant vers +oo, f(x) ~ 62—~
xr

2. L’idée est de poursuivre une succession d’intégrations par parties.
Par exemple, la suivante donne par les mémes arguments

/+oo 67t2 4 — /+oo (Qt)eﬂ? 4 6712 /+oo 3€7t2 & €7w2
* 2t2  , 4¢3 43 * 4t4 473"
quand z tend vers 400 et on obtient donc

e~ e g too ot et e e’
ST T A= < ).
f(@) 2z 43 + 4/L- t4 2z 4q3 +0< 3 )

2
o] e_t
{2n

+ . .
Il apparait a chaque étape /z dt. Opérons une intégration par

parties sur le segment [z, X] :

X g=t? Q= X (2t)e~t’ Q= et 241 X et &
- t2n - . 2t2n+1 - 2t2n+1 2 " t2n+2 :

En faisant tendre X vers +oo, il reste

“+o00 —t2 —z? 2 1 “+o00o —t2
/ S P / ° 4.
- t2n 2x2n+1 2 = t2n+2

—t2 —t? —t2

e e
Comme pour ¢ tendant vers +o00, —— = o| —— | avec t —> ——
t2n+2 t2" t2n

positive et intégrable sur [1, +oo], le théoreme d’intégration des relations
de comparaison donne

400 e—t2 B e—x2 —+o00 e—t2 B e—xz e—ac2

o $2n dt = 9p2n+1 +o S $2n dt | = 9p2n+1 +o r2nt+l )7
pour z tendant vers l'infini.

On en déduit que

2 2 5 ,
e~T e e w (=1)"(2n —1).---.3.1e®
f(fl?) = o - 4.’173 + 8.’[}5 — 4 2n+1x2n+1 +Rn+1(l‘)
avec
2 2
(- (2n+1).2n —1).---.3.1 [T et -
Rn-‘-l(x) = 2n+1 /; mdt =0 W

pour z tendant vers +o00. On obtient donc le développement asympto-
tique recherché

e e 3e® (=1)"(2n)le—" N ( e’ )
—_ . e . —_—mm 0 .

fz) = 20 43 + ] + 92n+1p|p2n+1 p2n+1




4.46. SERIE ASYMPTOTIQUE (2) 257

(—=1)"(2n)le~*"
22n+ln!w2n+l

3. Nous avons pour > 0 et n € N, u,(x) = . Ap-

pliquons la regle de D’Alembert :

Un+1 (JJ)
U ()

_ (2n+2)(2n+1)
N 4(n +1)ax? n—+o0

+00.

Cette limite prouve que la série > u,(z) diverge pour tout x > 0. <

4.46. Série asymptotique (2)

oo (—1)"n!
1. Préciser le domaine de convergence de la série Z T
x
n=0

2. Déterminer un développement asymptotique en +oco de la

+ —xt
fonction f(x) :/0 = 167—1—tdt'

(Ecole polytechnique)

> Solution.

1. Notons a,, le terme général de la série qui a un sens pour x € R*. Si

x #0,0ona [an 1| _ m+1 qui tend vers l'infini. La regle de D’Alembert

|an| ||
indique que Y a,, diverge : le domaine de convergence est donc vide.

—xt

2. Pour z > 0, la fonction t % est continue sur Ry et
e s PR . . —aot 1
intégrable en vertu du théoréeme de comparaison puisque le+t =o0 (72)

quand t tend vers l'infini. La fonction f est donc définie sur RY.
Pour z tendant vers l'infini, e~*! écrase 'intégrande si bien que 'on
peut imaginer que la contribution est concentrée vers 0. Or, sur [0, 1],

+oo

; s’écrit >~ (—1)™t". Comme cela, n’est pas valable sur
n=0

tout R, on va se ramener a une somme géométrique finie en écrivant

la fraction i 1

1 1N N & N+

— =Y (-1 -
1+t +¢ T1+d T;( R

En injectant dans l'intégrale et en remarquant que chaque intégrale
existe, on obtient

+o0 tNJrl —xt

f(x):ZH)"/; e ””tdt+/ ARl

Le changement de variable u = xt de classe C!, strictement monotone
nous donne
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/+oo e /+oo eiuﬁdﬁu _ F(n + ]_) _ n!
0 0

" ox xn—i—l xn-&-l ’

(=1)"n!
xn+1

00 N+1 _—xt
+Ru(x) avee Ry(a) = [ .

Ainsi, on a f(z) = 0 1+¢

3
L=

. 1
Si nous prouvons que R, (x) = o (Tﬂ pour x tendant vers oo, nous
T

aurons a notre disposition un développement asymptotique de f dans

) 1 .
I’échelle des e C’est le cas puisque

R ()] </+°°tN+16m: (N+1)! :0( 1 )

0 .Z'N+2 $L‘N+1

On conclut que pour = tendant vers l'infini

N (—=1)"n! 1
f(f)=z(xn)+1 +O<xN+1)'<]
=0

1 d
Notons L,, = Sl TX"

La suite (Ly)p>0 est une base orthogonale de R[X] lorsqu’on munit cet

(X2 —1)" le n-iéme polynéme de Legendre.

espace du produit scalaire intégral (P, Q) — /jl PQ. La formule de La-

place montre que, pour x > 1, L,(z) = 1 /Oﬂ(x + Va2 —1cosf)™db.
™

L’exercice suivant revient donc & déterminer un équivalent de L, (x)

quand n tend vers +oo, x > 1 étant fixé.

4.47. Polynomes de Legendre

Soit x > 1 et pour tout n € N,
s
I, = / (x + Va2 — 1cosh)"db.
0

Déterminer un équivalent de I,, quand n tend vers 4oco.
(Ecole polytechnique)

> Solution.
Le cas x = 1 étant trivial, on suppose x > 1. Pour simplifier les
écritures on pose x = chu, avec v > 0 et donc V22 — 1 = shu. On écrit

s
I, = / en In(ch u+sh u cos 9)d9,
0
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et on pose, pour tout 6 € [0,1], f(0) = In(chu + shwucosf). La fonction
f est strictement décroissante sur [0, 1]. Il va en résulter que la contribu-
tion principale a l'intégrale provient d’un voisinage de 0. Il s’agit de la
méthode de Laplace que le lecteur aura déja pu rencontrer dans les exer-
cices 1.41 et 1.42 du tome analyse 2. Précisons tout cela en commencgant
par chercher un développement limité de f en 0. On a

£(6) =1n (e“—Sh—u92 (a?)) —u+ln (1 Sh“; S (e?))

h —Uu
—u-— 3%92 + o(6?).

Soit « € 10, 1[. 1l existe § € |0, 7[ tel que, pour tout 6 € [0,4], on a :
h h
u— % U021+ a) < f(0) <u— %auai’a —a).
En intégrant ces inégalités sur [0, 6], on obtient :

.5 —u b 5 u
_nshue %(1+a) 2 _nghue (1—a) p2
e”“/ e 2 9740 < / e 0 qp < e"“/ e 0746 .
Jo 0 0

Un Un

e Pour tout A >0, on a

oul :/ e~ du.
Ry
On en déduit que

1
Un nﬁloo n 1+« et un nﬁr\jroo n 1_04’
ol a. — B
" [ nshue ™™
2 1
Soit € € ]0,1[. On a lim = lim = 1. On peut donc

a—0+/1 4+ « a—0 /1 — «

choisirae}o,l[telque\/liia 1—€et\/%<l+€etled

correspondant. Par définition d’un équivalent, on peut trouver N € N tel
que, pour n > N, on ait

Up > an(l —¢) et v, < by(1+e¢) et done

é
an(1—€) </O 040 < an(1+e).
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e Nous allons maintenant démontrer que /5 " enf(0)d9 est négligeable de-

vant a,. La fonction f étant strictement décroissante sur [0, ] on a, pour
eld,mletneN, nf(d) <nf(d) et donc

0< /ﬂ e @q0 < /7T e < renf ),
)

5
Ona )
Loet (F(8)—u) _
G g = lim /e 0,
Jn

car f(6) < f(0) = u. On en déduit que /; e"1(9)d9 est négligeable devant
ay. 1l existe N’ € N tel que, pour n > N’ on a

0< / e D40 < aye.
)

On a alors, pour n > N, N/,
an(1 —¢) <I, <an(l+2e).

On conclut que I,, ~ a,.
n——+oo

C’est un résultat connu que I = g (voir Pexercice 4.29). En rem-
plagant e* par sa valeur x + v/z2 — 1 et shu par la sienne vz2 — 1, on
obtient

e(n+%)u g

[T (x4 Va? - 1)tz
“Von

a .
" nshu 22 1
2
/22 _ 1)n+3
On conclut que |I,, ~ ,/l (z+ vV 1) . <
n—+oo \ 2n (ggQ — 1)1

L’exercice suivant présente la fonction maximale M de Littlewood
dans le cas d’une fonction positive bornée : la valeur de M en un point
x est la borne supérieure des valeurs moyennes de f sur les intervalles
centrés en x.
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4.48. Fonction maximale de Littlewood

Soit f € CO(R,R,), bornée. Pour z € R et t > 0, on définit

-+t
m(z,t) = l/ f(u)du et M(z) = supm(z,t).
2t Jo—t >0
1. Vérifier que f(z) < M(z) < ||f]lco-
2. Montrer que M est continue.
3. On suppose que [ est intégrable sur R et que
lim «f(z) = 0. Montrer que

r—+o0

lim zM(z) = %/Rf(u)du

r—+00

(Ecole normale supérieure)

> Solution.
1. On a, pour x € Ret t > 0,

1 z+t
me,t) < 5 [ I lledu = |l
r—t

Ceci entraine que pour tout réel z, on a M(x) < || f]lco- Le réel x étant
fixé et F étant une primitive de f, on a, pour ¢t > 0,

Flx +t) —F(z —¢)

m(x,t) = o7 .

D’apres la formule des accroissements finis, il existe ¢; € [z — ¢, x + t] tel
que m(z,t) = f(ct). La fonction f étant continue, on a

lim m(z, £) = lim f(c) = f(2).

Sachant que pour tout ¢ > 0, on a m(z,t) < M(z), on en déduit en
faisant tendre t vers 0 que

f(z) < M(2).

2. On suppose ||f|loc # 0, sinon il n’y a rien a démontrer. Soit
xg. Pour montrer la continuité de M en xg, on commence par majorer
Im(z,t) — m(xo,t)]|.

Pour z € R et ¢ > 0, on peut écrire,

m(x,t) — m(xg,t) =
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On en déduit que

[1fllool = ol

ma,t) = m(ro,t)] < P

Mais, d’autre part, il existe ¢; € |z —t,z + t[ et ¢ €]xg — t, 20 + t[ tels
que

m(z,t) —m(wo,t) = flc) = f(c}).
On va majorer |m(z,t) — m(xo,t)|, uniformément en ¢ en distinguant
selon que t est < petit > ou non. La fonction f est continue en zg. Soit
e > 0. Il existe n > 0 tel que |f(z) — f(zo)| < € si |z — zo| < 0. Soit =
tel que |z — x| < g

Si |t < g, alors on a |¢; — Y| < |z — mg| + 2t < 1, d’ott Pon déduit

|m(x,t) - m(ant” = |f(Ct) - f(Cg)‘ < €.
Sit> g, alors on a

3 sl —
Im(z, t) — m(xo, t)| < 3 flloclw = ol

)

Ui
des que |x — xg| < _&n .
ool < g
Posons a = min(7, ﬁ) et supposons que |z — x| < «. Alors,

pour tout £ > 0, on a
|m(z,t) — m(xo,t)| < g,
d’ou l'on déduit
m(xz,t) < m(xo,t) + e < M(zg) + ¢,
puis
M(z) < M(zg) + &.

On obtient de méme M(zg) < M(z)+e¢ et finalement |M(z) —M(zo)| < €.
La fonction M est continue en xy pour tout zog € R. Elle est continue
sur R.

3. Posons I = /Rf(u)du. La aussi, on peut supposer ||f|lcc 7# 0 et
donc I > 0. Soit € > 0 et x > 0. On a, par définition,

2 9 2 } )

1 (2+¢e)x
2zM(x) > 7 +€/75I f(uw)du.
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Puisque

(24¢e)z 1
/ fluw)du = I>(1—¢)l,ilexiste A>0
1+e¢

5 z—)Jroo
tel que, pour r>A ona

2zM(z) > (1 —2¢)L.

Il faut maintenant démontrer une inégalité de sens inverse. Pour ma-
jorer 2zM(z), il faut majorer 2zm(x,t) de maniére uniforme par rapport
a t. On distingue encore selon les < petites > et les < grandes > valeurs
de t.

Siz>0ett>(1—e¢)x, alors on a

1
2am(x,t) < 1.
-
Si on impose d’avoir de plus € < % ona - i - < (14 2¢) et donc

2zm(x,t) < (14 2¢)L

Nous savons que lim zf(z) = 0. Soit Btel que zf(z) < ¢ > B.
T—>+00
Soit > 0 et t < (1 —¢)z. On a alors © — ¢ > ex. Si on prend z > g

)

on obtient

2 T+t -2 2 t
2xm(x,t)<—m/ 8—dugﬁlnx—’— .

2t Jo—t u t r—t
On sait que ln vl < vt —-1< i < 2 On en déduit que
—t r—t x—1 ex

2zm(x,t) < 2e.

On peut supposer € < = - On obtient 2zem(z,t) < 2e <T < (14 2¢)L.

o |

I
2
Finalement, pour z > — , on a, pour tout t > 0, 2zm(z,t) < (1+2¢)L.

On en déduit que
2xM(z) < (14 2¢)L.

On a donc enfin, pour z > max(A, %),
(1 =2e)I < 22M(z) < (14 2¢)L.

Ceci démontre que lim 2zM(z) =1 et donc que
r—r00

lim aM(z 2/f ul <

r—+00

Le probléeme d’extremum suivant est issu de la théorie des probabilités.
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4.49. Calcul des variations

Soit E, l'ensemble des fonctions f : R — R7 continues
telles que /Rf =1, /Rtf(t)dt =0 et /Rt2f(t)dt = a. Déterminer

finEf fln f; existe-t-il f € E, réalisant ce minimum ?
cka Jr

Indication : pour (\,u,v) € R® fizé, on considérera l’expression
/flnf+)\/ f—l—u/ tf(t)dt—i—u/ t2f(t)dt et on cherchera f € Eq,
R R R R

qui minimalise l'intégrande.
(Ecole polytechnique)

> Solution.
Soit (A, u,v) € R3. Comme le conseille ’énoncé, on consideére, pour

fEEDL)

L(f) = /flnf+)\/Rf+u/Rtf(t)dt+u/Rt2f(t)dt
= L fOMfE) +A+pt+ vt?)dt.
Puisque A, u,v sont fixés et f décrit E,, les trois derniers termes de
cette somme sont constants. Déterminer finEf /R fIn f revient donc a
€Ea

dé i inf L(f).
éterminer nf (f)

Supposons qu’on ait déterminé fe E. telle que, pour tout t € R et
tout f € E,, on ait

FOn f(8) + A+ put + ) < F(E) (I f(E) + X+ pt + vi2) ().

On a alors flenEfa L(f) = L(f).

On remarque que la condition (x) est réalisée en particulier si, pour

o~

tout réel t, f(t) est la valeur ou la fonction
o1z €RY — z(lnz + A+ put +vt?) € R

atteint son minimum sur R%. Une rapide étude des variations de ¢y
montre qu’il faut prendre

f(t) _ efutzfptf/\fl.

Il reste & montrer qu’on peut choisir A, u, v pour que la fonction f
ainsi définie appartienne a E,,. La fonction f est clairement continue sur
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R. Pour qu’elle soit intégrable sur R, il faut prendre v > 0. On met le
trinéme —vt? — ut — A — 1 sous forme canonique; on trouve

2 2
71/(t+£> + ¢, aveccff)\flJru—
2v 4v

e En utilisant le résultat classique /Re’tht = /7 (cf. Vexercice 4.29),
on obtient

/]?:ec/er(H%)zdt:ec/e*”#dt: c /e*tht: c ﬁ
R R R NI N

e On calcule de méme

/ tf(t)dt = eC/ te~v(t+4:) ap = eC/ (t - ﬂ) et = —e VT
R R R 2v 2v /v

car /Rte*”tht = 0, puisque la fonction qu’on integre est impaire. La
condition /R tf(t)dt = 0 donne donc p = 0.
e Enfin, on calcule /R tzf(t)dt =e° /R 2= dt en intégrant par parties :

. . 1
la fonction ¢ —s te="t" a pour primitive t — — Ze_l’t?. Sachant que

lim te " = 0, on obtient
[t]|—=+o0
- e’ 2 e
t? tdt:—/e*”t dt = Y=
/]R 1) 2v Jr 2v /v
oL } T 2 7 _ c ﬁ i —
Les conditions /R f=1let /Rt f(t) = adonnent e NG et o = a.
1 1
On obtient donc finalement ¢ = 0, v = — et e¢ = ——, ce qui
K 2 V2t d

détermine .
On conclut que la borne inférieure cherchée est atteinte pour la fonc-
tion

On calcule alors cette borne inférieure :

J Fnf &(%&@m@ %)ﬂmt
(2m /f dt——/t2 ——%ln(Zﬂa)—E.

ln

On a donc

inf /flnf - —%m(wa) —% >

fEEa JR
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Les coefficients A, p, v sont appelés des multiplicateurs de Lagrange.
Ils sont utilisés dans tout probleme d’extremum sous contraintes (la va-
riable, élément d’un espace vectoriel est soumise & certaines conditions)
dont le type le plus simple est la recherche du mazimum d’une fonction
f:R® — R, la variable x € R™ étant soumise a des contraintes de la
forme g(x) =0 ou g(z) <0, ot g est une fonction de R™ dans R. Ici la
variable est une fonction f intégrable sur R et positive et les contraintes
sont/Rf =1, /Rtf(t)dt:O et/Rth(t)dt:a,

Une fonction positive et intégrable sur R, d’intégrale égale a 1 est
une densité de probabilité. Si X est une wvariable aléatoire de den-
sité f, les conditions /Rtf(t)dt =0 et /]Rth(t)dt = «a signifient que X
est d’espérance nulle et de variance a. L’entropie de X est égale par
définition a —/Rfln f- L’exercice montre que parmi les variables X
d’espérance nulle et de variance fixée, celle qui est d’entropie maxi-
male est celle qui suit une loi normale (cela reste vrai si on impose que
Uespérance soit égale & une constante quelconque).
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